Neuropeptides最新文献

筛选
英文 中文
BDNF-mediated depressor response by direct baroreceptor activation benefits for prevention and control of hypertension in high-latitude cold region 通过直接激活气压感受器,BDNF 介导的降压反应有利于预防和控制高纬度寒冷地区的高血压
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-02-25 DOI: 10.1016/j.npep.2025.102506
Yan Feng , Lei Yin , Ying Li
{"title":"BDNF-mediated depressor response by direct baroreceptor activation benefits for prevention and control of hypertension in high-latitude cold region","authors":"Yan Feng ,&nbsp;Lei Yin ,&nbsp;Ying Li","doi":"10.1016/j.npep.2025.102506","DOIUrl":"10.1016/j.npep.2025.102506","url":null,"abstract":"<div><div>Brian-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling impacts on neuronal and cardiovascular physiology; however, its role in neurocontrol of circulation via baroreflex afferent pathway is largely unknown. Gene and protein expression of BDNF/TrkB were detected in the nodose (NG) and nucleus of tractus solitary (NTS) and expression levels were higher in male compared with female rats, which is relevant well with the blood pressure (BP, males &gt; females in average). Microinjection of BDNF into NG dose-dependently reduced BP and this reduction was more dramatic in shamed control vs. renovascular hypertension (RVH) model rats, which partially inhibited in the presence of TrkB inhibitor K252a, indicating that BDNF-TrkB tends to lower BP under physiological and hypertensive conditions due presumably to a negative feed-back control by BP or compensatory mechanism. To answer this question, expression profiles for BDNF-TrkB were tested in the tissue of NG and NTS collected from RVH model rats. Consistently, the expression of both BDNF-TrkB were significantly up-regulated in RVH model alone with the elevation of BP. Taken these data together, our observation provides direct evidence showing the fundamental role of BDNF-TrkB signaling in autonomic control of BP regulation through baroreflex afferent function, potentially dominant role of BDNF-TrkB-mediated BP reduction in vivo baroreceptor activation due to distinct cellular mechanism compared with their role in the NTS, which extends our understanding of activity-dependent or compensatory mechanism of BDNF-TrkB in response to BP change, and sheds new light of BDNF-TrkB as potential target in prevention and control of hypertension in cold-region.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"111 ","pages":"Article 102506"},"PeriodicalIF":2.5,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic role of proteins and peptides in Management of Neurodegenerative Disorders 蛋白质和多肽在神经退行性疾病治疗中的机制作用
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-02-13 DOI: 10.1016/j.npep.2025.102505
Saumya Awasthi , Prafulla Chandra Tiwari , Srishti Awasthi , Arpit Dwivedi , Shikha Srivastava
{"title":"Mechanistic role of proteins and peptides in Management of Neurodegenerative Disorders","authors":"Saumya Awasthi ,&nbsp;Prafulla Chandra Tiwari ,&nbsp;Srishti Awasthi ,&nbsp;Arpit Dwivedi ,&nbsp;Shikha Srivastava","doi":"10.1016/j.npep.2025.102505","DOIUrl":"10.1016/j.npep.2025.102505","url":null,"abstract":"<div><div>Proteins and peptides have emerged as significant contributors in the management of neurodegenerative disorders due to their diverse biological functions. These biomolecules influence various cellular processes, including cellular repair, inflammation reduction, and neuronal survival, which are crucial for mitigating the effects of diseases such as Alzheimer's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS). By interacting with specific cellular receptors, proteins and peptides like neurotrophic factors, cytokines, and enzyme inhibitors promote neurogenesis, reduce oxidative stress, and enhance synaptic plasticity. Nevertheless, till certain limitations and challenges do exist to deliver these fragile therapeutic bioactives. Moreover, targeted delivery systems, such as nanoparticles and biomolecular carriers, are being developed to improve the bioavailability and specificity of these protein-based therapeutics, ensuring efficient crossing of the blood-brain barrier. This review explores the mechanistic pathways through which these biomolecules act, emphasizing their potential to modify disease progression and improve the quality of life in patients with neurodegenerative conditions. Overall, proteins and peptides are not only seen as promising therapeutic agents but also as foundational tools in advancing personalized medicine in the field of neurodegenerative disorders.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102505"},"PeriodicalIF":2.5,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143420506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of temporoammonic-CA1 synapses by neuropeptide Y is through Y1 receptors in mice 神经肽Y通过Y1受体调节小鼠颞氨- ca1突触
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-02-03 DOI: 10.1016/j.npep.2025.102504
Mariana A. Cortes , Aundrea F. Bartley , Qin Li , Taylor R. Davis , Stephen E. Cunningham , Mary Anne Garner , Patric J. Perez , Adela C. Harvey , Alecia K. Gross , Lynn E. Dobrunz
{"title":"Modulation of temporoammonic-CA1 synapses by neuropeptide Y is through Y1 receptors in mice","authors":"Mariana A. Cortes ,&nbsp;Aundrea F. Bartley ,&nbsp;Qin Li ,&nbsp;Taylor R. Davis ,&nbsp;Stephen E. Cunningham ,&nbsp;Mary Anne Garner ,&nbsp;Patric J. Perez ,&nbsp;Adela C. Harvey ,&nbsp;Alecia K. Gross ,&nbsp;Lynn E. Dobrunz","doi":"10.1016/j.npep.2025.102504","DOIUrl":"10.1016/j.npep.2025.102504","url":null,"abstract":"<div><div>Reduced levels of neuropeptide Y (NPY), an abundant neuromodulator in the brain, are linked to multiple neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). The CA1 region of hippocampus is important for anxiety regulation and highly expresses NPY. Injecting NPY into CA1 is anxiolytic and alleviates behavioral symptoms in a model of traumatic stress; these anxiolytic effects are blocked by a Y1 receptor antagonist. However the location of Y1Rs that mediate NPY's anxiolytic effects in CA1 remains unclear. CA1 receives inputs from entorhinal cortex through the temporammonic pathway (TA), which is important for fear learning and sensitive to stress. Our lab previously showed that NPY reduces TA-evoked synaptic responses, however, the subtype of NPY receptor mediating this reduction is unknown. Here we demonstrate that in mice both exogenous (bath-applied) and endogenously-released NPY act through Y1 receptors in the TA pathway. This is the first demonstration of Y1 receptor-mediated effect on synaptic function in CA1. Interestingly, chronic overexpression of NPY (in NPY-expressing interneurons) impairs the sensitivity of the TA-evoked synaptic response to a Y1 receptor agonist. However, the long-known NPY Y2 receptor-mediated effect on the Schaffer collateral (SC) pathway is unaffected by NPY overexpression. Therefore, NPY can have a pathway-specific impact on synaptic transmission in CA1 based on the differential expression of NPY receptors and their response to overexpression of NPY. Our results demonstrating that NPY acts at Y1 receptors in the TA pathway are consistent with the idea that the TA pathway underlies the anxiolytic effects of NPY in CA1.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102504"},"PeriodicalIF":2.5,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of corticotropin-releasing factor (CRF) and urocortins on the serotonin (hydroxytryptamine, 5HT) released from the raphe nuclei (RN) 促肾上腺皮质激素释放因子(CRF)和尿皮质素对中脑核(RN)释放血清素(羟色胺,5HT)的影响。
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-01-09 DOI: 10.1016/j.npep.2025.102503
Aliz Kovács , Patrícia Tancsics , Miklós Palotai , Zsolt Bagosi
{"title":"The effects of corticotropin-releasing factor (CRF) and urocortins on the serotonin (hydroxytryptamine, 5HT) released from the raphe nuclei (RN)","authors":"Aliz Kovács ,&nbsp;Patrícia Tancsics ,&nbsp;Miklós Palotai ,&nbsp;Zsolt Bagosi","doi":"10.1016/j.npep.2025.102503","DOIUrl":"10.1016/j.npep.2025.102503","url":null,"abstract":"<div><div>Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress <em>via</em> two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides. However, the exact action of CRF and urocortins on the serotonin (5-hydroxytryptamine, 5HT) release was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the 5HT released from the rat raphe nuclei (RN), the most important brain regions producing 5HT, and the participation of CRF receptors in these actions. In order to do so, male Wistar rats were used, their RN were isolated and dissected, and the RN slices were incubated with tritium-labelled 5HT, superfused and stimulated electrically. During superfusion, the RN slices were treated with CRF, UCN1, UCN2 or UCN3, and, when significant effect was observed, pretreated with selective CRF1 antagonist antalarmin or selective CRF2 antagonist astressin2B. The release of tritium-labelled 5HT from the RN was determined by liquid scintillation counting. CRF and UCN1 decreased significantly the tritium-labelled 5HT release from the RN, and these effects were reversed by antalarmin, but not by astressin2B. In addition, UCN3, but not UCN2, increased significantly the tritium-labelled 5HT release from the RN, and this effect was reduced by astressin2B, but not antalarmin. Our results indicate the existence of two apparently opposing CRF systems in the RN: activation of CRF1 by CRF and UCN1 may inhibit, whereas activation of CRF2 by UCN3 may stimulate the 5HT release. The dysbalance between CRF1 and CRF2 activation and, consequently, alteration of serotoninergic signalling may result in anxiety and depression, associated with hyperactivity of the HPA axis.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102503"},"PeriodicalIF":2.5,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sucralose uses reward pathways to promote acute caloric intake 三氯蔗糖利用奖励途径促进急性热量摄入。
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-01-06 DOI: 10.1016/j.npep.2025.102502
Qiao-Ping Wang , An-Qi Li , Bei Wang , Xin-Yuan Zhao , Sha-Sha Li , Herbert Herzog , G. Gregory Neely
{"title":"Sucralose uses reward pathways to promote acute caloric intake","authors":"Qiao-Ping Wang ,&nbsp;An-Qi Li ,&nbsp;Bei Wang ,&nbsp;Xin-Yuan Zhao ,&nbsp;Sha-Sha Li ,&nbsp;Herbert Herzog ,&nbsp;G. Gregory Neely","doi":"10.1016/j.npep.2025.102502","DOIUrl":"10.1016/j.npep.2025.102502","url":null,"abstract":"<div><div>Non-nutritive sweeteners (NNSs) are used to reduce caloric intake by replacing sugar with compounds that are sweet but contain little or no calories. In this study, we investigate how non-nutritive sweetener sucralose to promote acute food intake in the fruit fly <em>Drosophila melanogaster</em>. Our results showed that acute exposure to NNSs sweetness induces a robust hyperphagic response in flies. Cellular and molecular dissection of this acute effect revealed the requirement of a reward pathway comprising of sweet taste neurons, octopaminergic neurons, and NPF neurons which drive increased food intake in response to sucralose. These data provide mechanistic insight into how NNSs can increase food intake, information that may help us better understand how artificially sweeteners may impact our physiology.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102502"},"PeriodicalIF":2.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway 经颅脉冲电流刺激可通过orexin-A/NLRP3通路缓解外伤性脑损伤后神经元焦亡和神经功能障碍
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-01-04 DOI: 10.1016/j.npep.2025.102501
Peng Yao , Qianhui Zhou , Bingkai Ren , Li Yang , Yang Bai , Zhen Feng
{"title":"Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway","authors":"Peng Yao ,&nbsp;Qianhui Zhou ,&nbsp;Bingkai Ren ,&nbsp;Li Yang ,&nbsp;Yang Bai ,&nbsp;Zhen Feng","doi":"10.1016/j.npep.2025.102501","DOIUrl":"10.1016/j.npep.2025.102501","url":null,"abstract":"<div><div>Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity. However, the exact mechanism underlying this neuroprotective effect remains elusive. In this study, mice with TBI induced by controlled cortical impact were subjected to 30 min of daily tPCS for 5 consecutive days and intraperitoneally administered an orexin receptor type 1 (OX<sub>1</sub>R) antagonist (SB334867). The neuroprotective effects of tPCS and its potential mechanisms were assessed through behavioral tests, histopathological examination, immunohistochemistry and Western blotting. In vitro experiments involved stimulating HT22 cells with LPS + ATP to assess the anti-neuroinflammatory effects of Orexin-A (OX-A) using CCK-8, Western blotting, and Flow cytometry. The results demonstrated that tPCS reduced the mNSS in TBI mice, ameliorated tissue damage, improved motor and cognitive deficits, and upregulated OX-A expression. Notably, SB334867 reversed the protective effects of tPCS. In vitro studies revealed that OX-A inhibited the formation and activation of NLRP3 inflammasomes, resulting in reduced levels of ROS and restoration of MMP. However, this effect could be reversed by the NLRP3 agonist BMS-986299. Our findings suggest that tPCS promotes the release of OX-A and modulates the OX<sub>1</sub>R/NLRP3 pathway to mitigate the inflammatory response following TBI, thereby exerting neuroprotective effects.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102501"},"PeriodicalIF":2.5,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143137317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats 内源性N/OFQ对DPN的影响:对大鼠下肢血流调节的研究
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-01-01 DOI: 10.1016/j.npep.2024.102492
Yuan-jing Qin , Po Zhang , Peng Zhang , Jing Li , Qixing Yang , Jun-li Sun , Yu-zhang Liang , Li-li Wang , Lin-zhong Zhang , Yi Han
{"title":"The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats","authors":"Yuan-jing Qin ,&nbsp;Po Zhang ,&nbsp;Peng Zhang ,&nbsp;Jing Li ,&nbsp;Qixing Yang ,&nbsp;Jun-li Sun ,&nbsp;Yu-zhang Liang ,&nbsp;Li-li Wang ,&nbsp;Lin-zhong Zhang ,&nbsp;Yi Han","doi":"10.1016/j.npep.2024.102492","DOIUrl":"10.1016/j.npep.2024.102492","url":null,"abstract":"<div><div>Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, often accompanied by impaired vascular endothelial function in the lower limbs. This dysfunction is characterized by a reduced vasodilatory response, leading to decreased blood flow in the lower limbs and ultimately contributing to the development of diabetic peripheral neuropathy. To delve deeper into this pathological process, the study employed bioinformatics to identify and analyze genes highly active in DPN. The investigation revealed that Membrane metallo-endopeptidase (MME) was effectively mitigated by its antagonist. Male Sprague-Dawley (SD) rats served as the model to systematically explore the intrinsic connection among the nociceptible/orphanin FQ-N/OFQ receptor (N/OFQ-NOP) system, femoral artery blood flow in the lower extremities, MME, and DPN. The rats were randomized into two groups: a control group and a DPN group induced by a single intraperitoneal injection of 55 mg/kg streptozotocin (STZ), with 6 rats in each group. The findings indicated that compared to the control group, the DPN group exhibited a significant reduction in femoral artery blood flow. This was accompanied by a notable increase in serum N/OFQ concentration, heightened expression of opioid-related nociceptive protein receptor 1 (OPRL1) and MME in femoral artery tissues of the lower limbs, and an elevated sciatic nerve stimulation threshold. These results suggest that the serum N/OFQ level in DPN rats is increased, which may promote the occurrence of peripheral neuropathy by up regulating MME and reducing peripheral flow distribution.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"109 ","pages":"Article 102492"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FMRFamide G protein-coupled receptors (GPCR) in the cuttlefish Sepiella japonica: Identification, characterization and expression profile 墨鱼FMRFamide G蛋白偶联受体(GPCR)的鉴定、表征和表达谱。
IF 2.5 3区 医学
Neuropeptides Pub Date : 2025-01-01 DOI: 10.1016/j.npep.2024.102491
Jian-jun Xie , Ying Li , Jun-hong Wu, Pei-xuan Fang, Shuang Li, Xu Zhou, Chang-feng Chi
{"title":"FMRFamide G protein-coupled receptors (GPCR) in the cuttlefish Sepiella japonica: Identification, characterization and expression profile","authors":"Jian-jun Xie ,&nbsp;Ying Li ,&nbsp;Jun-hong Wu,&nbsp;Pei-xuan Fang,&nbsp;Shuang Li,&nbsp;Xu Zhou,&nbsp;Chang-feng Chi","doi":"10.1016/j.npep.2024.102491","DOIUrl":"10.1016/j.npep.2024.102491","url":null,"abstract":"<div><div>FMRFamide is a ubiquitous neuromodulator in the animal kingdom. Once FMRFamide or similar neuropeptides bind to their G protein-coupled receptors (GPCR), a series of signal transduction events are triggered, thereby mediating various physiological effects. FMRFamide had been reported to be involved in the regulation of sexual maturation in <em>Sepiella japonica</em>. In this research, the full-length cDNA of <em>FMRFamide G protein-coupled receptor of S. japonica</em> (<em>SjFaGPCR</em>) was cloned. The sequence is 1396 bp long and encodes a protein consisting of 418 amino acid residues, lacking a signal peptide at the N-terminal region. The 3D structure of <em>Sj</em>FaGPCR was predicted using <em>Todarodes pacificus</em> rhodopsin as a template, and the result indicated the presence of seven transmembrane regions. Multiple sequence alignments and phylogenetic trees indicated that <em>Sj</em>FaGPCR is conserved among invertebrates, and shares highly similar sequence characteristics with other cephalopods. <em>In situ</em> hybridization (ISH) results revealed that significant signals of <em>SjFaGPCR</em> were detected in the central medulla and the granular layer cells of the optic lobe, and were also observed in the supraesophageal and subesophageal masses of the brain<em>.</em> Meanwhile, quantitative real-time PCR (qRT-PCR) results showed that a higher expression level of <em>SjFaGPCR</em> mRNA was detected in the brain and optic lobe of female cuttlefish at stage III and stage VI, and also in the brain (stage V) and optic lobe (stages IV and V) of male cuttlefish than that in other tissues. The co-localization results demonstrated that fluorescence signals of <em>Sj</em>FMRFamide and <em>Sj</em>FaGPCR were overlapped in HEK293 cells, suggesting a possible interaction between the <em>Sj</em>FMRFamide and <em>Sj</em>FaGPCR. These findings provide molecular support for further exploring the roles of FMRFamide and FaGPCR in the reproductive regulation of <em>S. japonica</em>.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"109 ","pages":"Article 102491"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant PRDX3 gene therapy protects brain cells and prevents neurodegeneration in an animal model of Parkinson's disease 抗氧化剂 PRDX3 基因疗法在帕金森病动物模型中保护脑细胞并防止神经变性。
IF 2.5 3区 医学
Neuropeptides Pub Date : 2024-12-27 DOI: 10.1016/j.npep.2024.102494
Sheila Adela Villa-Cedillo , Esrom Jared Acosta-Espinoza , Adolfo Soto-Domínguez , Humberto Rodríguez-Rocha , Carlos R. Montes-de-Oca-Saucedo , Aracely García-García , María de Jesús Loera-Arias , Cristina Sarahi Ríos-Vazquez , Guillermo Sánchez-Torres , Jesús Valdés , Odila Saucedo-Cárdenas
{"title":"Antioxidant PRDX3 gene therapy protects brain cells and prevents neurodegeneration in an animal model of Parkinson's disease","authors":"Sheila Adela Villa-Cedillo ,&nbsp;Esrom Jared Acosta-Espinoza ,&nbsp;Adolfo Soto-Domínguez ,&nbsp;Humberto Rodríguez-Rocha ,&nbsp;Carlos R. Montes-de-Oca-Saucedo ,&nbsp;Aracely García-García ,&nbsp;María de Jesús Loera-Arias ,&nbsp;Cristina Sarahi Ríos-Vazquez ,&nbsp;Guillermo Sánchez-Torres ,&nbsp;Jesús Valdés ,&nbsp;Odila Saucedo-Cárdenas","doi":"10.1016/j.npep.2024.102494","DOIUrl":"10.1016/j.npep.2024.102494","url":null,"abstract":"<div><div>Neurodegenerative diseases, including Parkinson's Disease (PD), are a significant global health challenge with no effective therapies to counteract neurodegeneration. Genetic and environmental factors lead to mitochondrial dysfunction and increased reactive oxygen species (ROS), resulting in oxidative stress. This stress reduces levels of Peroxiredoxin 3 (PRDX3), a key protein for maintaining ROS balance at the mitochondrial level, increasing the substantia nigra's susceptibility to damage. To investigate the protective role of antioxidant gene therapy in a PD model, we overexpressed the PRDX3 enzyme using a cell-penetrating peptide-based delivery system (mRVG9R-PRDX3 complex). The mRVG9R peptide was combined with a green fluorescent protein (GFP) reporter plasmid expressing PRDX3 to create the complex. Overexpression of the PRDX3 gene in neuronal phenotype cells was confirmed in vitro using dopaminergic SH-SY5Y cells. Following successful in vitro expression, the mRVG9R-PRDX3 complex was stereotaxically injected into the striatum of male C57BL/6 mice. The PD model was induced by administering paraquat (PQ) twice a week for 6 weeks. After the final PQ injection, motor and cognitive functions were evaluated, followed by histological analysis. Animals treated with the mRVG9R-PRDX3 complex showed a clear reduction in PQ-induced PD symptomatology and prevented cellular senescence in the substantia nigra's neuronal population. The mRVG9R-PRDX3 gene therapy improved motor and cognitive functions in the PD animal model and demonstrated potential in protecting substantia nigra dopaminergic neurons from PQ-induced death.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102494"},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142907342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phoenixin-14 inhibits the formation of cerebral aneurysms in rats by downregulating the p38/NF-κB signaling pathway 凤凰素14通过下调p38/NF-κB信号通路抑制大鼠脑动脉瘤的形成。
IF 2.5 3区 医学
Neuropeptides Pub Date : 2024-12-20 DOI: 10.1016/j.npep.2024.102493
Qizheng Li , Lin Zeng , Songyang Peng , Mengting Zhu , Yaodan Zhang
{"title":"Phoenixin-14 inhibits the formation of cerebral aneurysms in rats by downregulating the p38/NF-κB signaling pathway","authors":"Qizheng Li ,&nbsp;Lin Zeng ,&nbsp;Songyang Peng ,&nbsp;Mengting Zhu ,&nbsp;Yaodan Zhang","doi":"10.1016/j.npep.2024.102493","DOIUrl":"10.1016/j.npep.2024.102493","url":null,"abstract":"<div><div>Cerebral aneurysms (CA) are a serious condition characterized by the bulging of a blood vessel in the brain, which can lead to rupture and life-threatening bleeding. The pathophysiology of CA involves complex processes, particularly inflammation and macrophage infiltration. Phoenixin-14 (PNX-14) is a neuropeptide with diverse biological effects, including roles in reproduction, energy homeostasis, and inflammation. Recent evidence has highlighted the therapeutic potential of PNX-14 in various conditions. Notably, PNX-14 has demonstrated neuroprotective effects in the central nervous system, and we hypothesized that it could also offer vascular protection in the context of CA. In this study, we demonstrate that serum PNX-14 levels are reduced in patients and rat models with CA compared to healthy controls. Our findings show that PNX-14 administration significantly reduces aneurysmal size in a rat model with left renal artery ligation. Furthermore, PNX-14 mitigates the inflammatory response by inhibiting the expression of IL-1β and MCP-1 at both the mRNA and protein levels in the Circle of Willis (COW) region. PNX-14 treatment also decreases the levels of MMP-2 and MMP-9 in the COW region. Mechanistically, PNX-14 suppresses macrophage infiltration and inhibits the activation of the p38/NF-κB signaling pathway. These findings suggest that PNX-14 could be a promising therapeutic agent for the prevention and treatment of CA.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"110 ","pages":"Article 102493"},"PeriodicalIF":2.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信