Neuroprotective effect of Ac-SDKP peptide in SH-SY5Y cells and rat model of Parkinson's disease against 6-OHDA-induced oxidative stress and ER stress

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Maryam Kamarehei , Hamid Zahednasab
{"title":"Neuroprotective effect of Ac-SDKP peptide in SH-SY5Y cells and rat model of Parkinson's disease against 6-OHDA-induced oxidative stress and ER stress","authors":"Maryam Kamarehei ,&nbsp;Hamid Zahednasab","doi":"10.1016/j.npep.2025.102534","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidative stress and endoplasmic reticulum (ER) stress are key contributors to the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), for which no definitive cure currently exists. This study investigated the neuroprotective potential of the <em>N</em>-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) tetrapeptide in both in vitro and in vivo PD models. In cell-based analyses, pre-treatment with 20 nM Ac-SDKP provided significant protection against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells. In vivo, the neuroprotective potential of the peptide was also supported through daily administration of rats with Ac-SDKP (800 μg/kg) after 6-OHDA lesioning, which unveiled a series of significant observations. Treated animals demonstrated highly preserved dopaminergic neurons through reduced activation of apoptotic markers such as caspase-3 and caspase-12. In addition to cytoprotection, Ac-SDKP also produced striking behavioral improvement. Treated animals exhibited improved motor coordination and ability on spatial memory tasks, as well as the significant attenuation of anxiety-like and depressive-like behaviors. Such behavioral improvement is probable because Ac-SDKP possesses the ability to modulate several pathological features of PD. In fact, the peptide was able to decrease oxidative stress, diminish ER stress, and inhibit neuroinflammatory signaling. Collectively, these findings position Ac-SDKP as a promising neuroprotection candidate, and as a candidate with potential to be developed as a multifactorial treatment for the complex pathophysiology of PD.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"112 ","pages":"Article 102534"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417925000344","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress and endoplasmic reticulum (ER) stress are key contributors to the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD), for which no definitive cure currently exists. This study investigated the neuroprotective potential of the N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) tetrapeptide in both in vitro and in vivo PD models. In cell-based analyses, pre-treatment with 20 nM Ac-SDKP provided significant protection against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells. In vivo, the neuroprotective potential of the peptide was also supported through daily administration of rats with Ac-SDKP (800 μg/kg) after 6-OHDA lesioning, which unveiled a series of significant observations. Treated animals demonstrated highly preserved dopaminergic neurons through reduced activation of apoptotic markers such as caspase-3 and caspase-12. In addition to cytoprotection, Ac-SDKP also produced striking behavioral improvement. Treated animals exhibited improved motor coordination and ability on spatial memory tasks, as well as the significant attenuation of anxiety-like and depressive-like behaviors. Such behavioral improvement is probable because Ac-SDKP possesses the ability to modulate several pathological features of PD. In fact, the peptide was able to decrease oxidative stress, diminish ER stress, and inhibit neuroinflammatory signaling. Collectively, these findings position Ac-SDKP as a promising neuroprotection candidate, and as a candidate with potential to be developed as a multifactorial treatment for the complex pathophysiology of PD.
Ac-SDKP肽对SH-SY5Y细胞和帕金森病大鼠模型抗6- ohda诱导的氧化应激和内质网应激的神经保护作用
氧化应激和内质网(ER)应激是神经退行性疾病发病机制的关键因素,包括帕金森病(PD),目前尚无明确的治疗方法。本研究研究了n -乙酰-seryl-天冬氨酸-赖氨酸-脯氨酸(Ac-SDKP)四肽在体内和体外PD模型中的神经保护作用。在基于细胞的分析中,20 nM Ac-SDKP预处理对SH-SY5Y细胞6-羟基多巴胺(6-OHDA)诱导的神经毒性具有显著的保护作用。在体内,6-OHDA损伤后,每天给大鼠注射Ac-SDKP (800 μg/kg),也支持了该肽的神经保护潜力,这揭示了一系列显著的观察结果。通过减少凋亡标记物如caspase-3和caspase-12的激活,治疗动物表现出高度保存的多巴胺能神经元。除了细胞保护外,Ac-SDKP还产生了显著的行为改善。治疗后的动物在空间记忆任务中表现出运动协调和能力的改善,以及焦虑和抑郁样行为的显著减弱。这种行为改善可能是因为Ac-SDKP具有调节PD的几种病理特征的能力。事实上,这种肽能够减少氧化应激,减少内质网应激,并抑制神经炎症信号。总的来说,这些发现将Ac-SDKP定位为一种有前途的神经保护候选药物,并有可能成为PD复杂病理生理的多因素治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuropeptides
Neuropeptides 医学-内分泌学与代谢
CiteScore
5.40
自引率
6.90%
发文量
55
审稿时长
>12 weeks
期刊介绍: The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信