NeuropeptidesPub Date : 2024-11-12DOI: 10.1016/j.npep.2024.102483
Kadriye Yağmur Oruç , Gökhan Ağtürk , Aykut Oruç , Karolin Yanar , Hakkı Oktay Seymen
{"title":"Protective effect of Apelin-13 on D-glutamic acid-induced excitotoxicity in SH-SY5Y cell line: An in-vitro study","authors":"Kadriye Yağmur Oruç , Gökhan Ağtürk , Aykut Oruç , Karolin Yanar , Hakkı Oktay Seymen","doi":"10.1016/j.npep.2024.102483","DOIUrl":"10.1016/j.npep.2024.102483","url":null,"abstract":"<div><div>Excitotoxicity, resulting from excessive accumulation of glutamate in the extracellular space, leads to neuronal cell death. This study investigates the protective effects of Apelin-13 on D-Glutamic acid-induced excitotoxicity in SH-SY5Y human neuroblastoma cells, an in-vitro model for neurodegenerative diseases. Unlike the commonly studied L-glutamic acid, this research focuses on D-Glutamic acid to understand its specific impacts. SH-SY5Y cells were treated with varying concentrations of D-Glutamic acid and Apelin-13, followed by analyses at 12 and 24 h to evaluate cell viability, oxidative stress markers, and inflammatory cytokine levels. Cell viability assays revealed significant cytotoxic effects of D-Glutamic acid at doses of 10 mM and 20 mM, reducing viability by over 50 %. However, Apelin-13 treatment mitigated these effects, especially at 2 μg/ml, enhancing cell viability and reducing inflammatory cytokine levels (IL-1β and TNF-α). Apelin-13 also increased anti-inflammatory cytokine levels (IL-10 and TGF-β1) and brain-derived neurotrophic factor (BDNF), indicating its neuroprotective role. Oxidative stress markers, including ROS, AGE, AOPP, DT, T-SH, were significantly elevated by D-Glutamic acid but effectively reduced by Apelin-13. The neuroprotective mechanisms of Apelin-13 involve modulation of cAMP/PKA and MAPK signaling pathways, enhancing BDNF synthesis and suppressing oxidative stress and inflammatory responses. This study is the first to demonstrate the effects of D-Glutamic acid on SH-SY5Y cells. It highlights Apelin-13's potential as a therapeutic agent against excitotoxicity-induced neuronal damage, emphasizing its ability to modulate key molecular pathways involved in inflammation and oxidative stress. Further in-vivo studies are warranted to explore the long-term neuroprotective effects of Apelin-13 in treating neurodegenerative diseases.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuropeptidesPub Date : 2024-11-08DOI: 10.1016/j.npep.2024.102484
Artur Pałasz , Klaudia Ozimirska , Aleksandra Suszka-Świtek , Katarzyna Bogus , Iwona Błaszczyk , Veerta Sharma , Marta Pukowiec , John J. Worthington , Izabela Młynarczuk-Biały , Anna Lipiec-Borowicz
{"title":"Neuroanatomical mapping of spexin and nesfatin-1-expressing neurons in the human brainstem","authors":"Artur Pałasz , Klaudia Ozimirska , Aleksandra Suszka-Świtek , Katarzyna Bogus , Iwona Błaszczyk , Veerta Sharma , Marta Pukowiec , John J. Worthington , Izabela Młynarczuk-Biały , Anna Lipiec-Borowicz","doi":"10.1016/j.npep.2024.102484","DOIUrl":"10.1016/j.npep.2024.102484","url":null,"abstract":"<div><div>Neuropeptides are involved in numerous brain activities being able to control a wide spectrum of physiological functions. In recent years, a number of novel pleiotropic regulatory peptides have been discovered in animal brain structures. The purpose of this descriptive neurochemical investigation was to detect the possible expression of the novel multifunctional neuropeptides spexin (SPX) and nesfatin-1 within the human brainstem. Using immunohistochemical and fluorescence techniques, neuroanatomical analysis of the SPX and nesfatin-1 expression and distribution was performed in selected sections of the human midbrain and medulla oblongata. The presence of SPX-positive neurons in the human brainstem was revealed for the first time and previous reports on the expression of nesfatin-1 were additionally confirmed. The research results suggest that SPX and nesfatin-1 are new regulatory neuropeptides of the human brainstem potentially involved in the regulation of key autonomic activities of this brain region.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NeuropeptidesPub Date : 2024-11-02DOI: 10.1016/j.npep.2024.102482
Changgen Li , Na Zang , Enmei Liu
{"title":"Neuropeptides or their receptors in pathogenesis of lung diseases and therapeutic potentials","authors":"Changgen Li , Na Zang , Enmei Liu","doi":"10.1016/j.npep.2024.102482","DOIUrl":"10.1016/j.npep.2024.102482","url":null,"abstract":"<div><div>There are complex interactions between the immune system and the nervous system in the lung. The nervous system perceives environmental stimuli and transmits these signals to immune cells via neurotransmitters, which is essential for effective immunity and environmental balance. Neuropeptides are important neurotransmitters in the lung, where they regulate immune responses through direct and indirect mechanisms, affecting the occurrence and development of lung diseases. In this review, we emphasize the role of neuropeptides in the pathogeneis of lung diseases and their potential therapeutic value for lung diseases.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}