Maryam Motamedi , Dina Morshedi , Najaf Allahyari Fard
{"title":"PQK7: A novel peptide inhibitor targeting alpha-synuclein fibrillogenesis in Parkinson's disease","authors":"Maryam Motamedi , Dina Morshedi , Najaf Allahyari Fard","doi":"10.1016/j.npep.2025.102522","DOIUrl":null,"url":null,"abstract":"<div><div>The accumulation of alpha-synuclein (⍺-Syn) fibrils plays a central role in the progression of Parkinson's disease (PD) and related neurodegenerative disorders. In this context, the development of peptide inhibitors designed to inhibit ⍺-Syn through computational methods has emerged as a promising area of research. This study focused on developing a peptide inhibitor, PQK7, designed based on the key residues of NAC region of ⍺-Syn fibrils involved in its aggregation. Using molecular docking and dynamics simulations, PQK7 was shown to bind key residues in the NAC region of ⍺-Syn (Val-74, Ala-76, Val-77, Thr-81, Ser-87, Ile-88, and Ala-89), effectively disrupting the formation of fibrils. MD simulations indicated that the PQK7-⍺-Syn complex reaches a stable conformation, which showed increased fluctuations and reduced β-sheet content, suggests that PQK7 interferes with ⍺-Syn fibrillation at the molecular level. In vitro assays like ThT fluorescence assay, AFM imaging, CD specotroscopy, and SDS-PAGE analysis confirmed that PQK7 significantly reduces ⍺-Syn fibril formation, particularly at substoichiometric concentrations, while keeping ⍺-Syn monomers in a soluble state. Additionally, PQK7-⍺-Syn treatment in SH-SY5Y cells reduced the toxicity of ⍺-Syn aggregates, restoring normal cell cycle progression and reducing apoptosis and oxidative stress. Our findings suggest that PQK7 holds potential as a therapeutic agent for PD, acting as an anti-oligomeric inhibitor that targets early ⍺-Syn aggregates without affecting the protein's normal function.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"111 ","pages":"Article 102522"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417925000228","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The accumulation of alpha-synuclein (⍺-Syn) fibrils plays a central role in the progression of Parkinson's disease (PD) and related neurodegenerative disorders. In this context, the development of peptide inhibitors designed to inhibit ⍺-Syn through computational methods has emerged as a promising area of research. This study focused on developing a peptide inhibitor, PQK7, designed based on the key residues of NAC region of ⍺-Syn fibrils involved in its aggregation. Using molecular docking and dynamics simulations, PQK7 was shown to bind key residues in the NAC region of ⍺-Syn (Val-74, Ala-76, Val-77, Thr-81, Ser-87, Ile-88, and Ala-89), effectively disrupting the formation of fibrils. MD simulations indicated that the PQK7-⍺-Syn complex reaches a stable conformation, which showed increased fluctuations and reduced β-sheet content, suggests that PQK7 interferes with ⍺-Syn fibrillation at the molecular level. In vitro assays like ThT fluorescence assay, AFM imaging, CD specotroscopy, and SDS-PAGE analysis confirmed that PQK7 significantly reduces ⍺-Syn fibril formation, particularly at substoichiometric concentrations, while keeping ⍺-Syn monomers in a soluble state. Additionally, PQK7-⍺-Syn treatment in SH-SY5Y cells reduced the toxicity of ⍺-Syn aggregates, restoring normal cell cycle progression and reducing apoptosis and oxidative stress. Our findings suggest that PQK7 holds potential as a therapeutic agent for PD, acting as an anti-oligomeric inhibitor that targets early ⍺-Syn aggregates without affecting the protein's normal function.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.