{"title":"Effects of oxytocin on behavior and neurotrophic factors in the brain of aged female rats exposed to chronic social isolation","authors":"Helin Demirtas , Burcu Acikgoz , Ayca Arslankiran , Bahar Dalkiran , Amac Kiray , Muge Kiray , Ayfer Dayi , Ilkay Aksu","doi":"10.1016/j.npep.2025.102532","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to investigate the effects of social isolation stress and intranasally administered oxytocin on physiological and behavioral alterations during aging in rats. A total of 28, aged female Sprague-Dawley rats were allocated into four groups: control (C), social isolation (SI), oxytocin (O), and oxytocin+social isolation (OI). Animals in the SI and OI groups were housed in individual cages for four weeks. Intranasal oxytocin (2 μg/kg/day) was administered to the O and OI groups 14 times during the third and fourth weeks of the study. Behavioral assessments were conducted. Levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured. In the Morris water maze test, all groups demonstrated improved learning performance, reflected by a progressive reduction in the time taken to locate the hidden platform. The three-chamber sociability test revealed that sociability was significantly impaired in the SI group but preserved in the O, OI, and C groups. VEGF levels in the prefrontal cortex were significantly reduced in the SI group compared to all other groups. Notably, VEGF levels were higher in the OI group than in the SI group. Hippocampal neuron density was lower in the SI group but was preserved in the OI group, suggesting a neuroprotective effect of oxytocin. These findings highlight the protective roles of oxytocin and sociability against the detrimental effects of chronic social isolation, particularly in preserving hippocampal neuron density and maintaining sociability and learning. Further research is needed to elucidate the molecular and behavioral mechanisms underlying these effects.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"112 ","pages":"Article 102532"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417925000320","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the effects of social isolation stress and intranasally administered oxytocin on physiological and behavioral alterations during aging in rats. A total of 28, aged female Sprague-Dawley rats were allocated into four groups: control (C), social isolation (SI), oxytocin (O), and oxytocin+social isolation (OI). Animals in the SI and OI groups were housed in individual cages for four weeks. Intranasal oxytocin (2 μg/kg/day) was administered to the O and OI groups 14 times during the third and fourth weeks of the study. Behavioral assessments were conducted. Levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured. In the Morris water maze test, all groups demonstrated improved learning performance, reflected by a progressive reduction in the time taken to locate the hidden platform. The three-chamber sociability test revealed that sociability was significantly impaired in the SI group but preserved in the O, OI, and C groups. VEGF levels in the prefrontal cortex were significantly reduced in the SI group compared to all other groups. Notably, VEGF levels were higher in the OI group than in the SI group. Hippocampal neuron density was lower in the SI group but was preserved in the OI group, suggesting a neuroprotective effect of oxytocin. These findings highlight the protective roles of oxytocin and sociability against the detrimental effects of chronic social isolation, particularly in preserving hippocampal neuron density and maintaining sociability and learning. Further research is needed to elucidate the molecular and behavioral mechanisms underlying these effects.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.