Arian Vezvaee, Nanako Shitara, Shuo Sun, Andrés Montoya-Castillo
{"title":"Fourier transform noise spectroscopy","authors":"Arian Vezvaee, Nanako Shitara, Shuo Sun, Andrés Montoya-Castillo","doi":"10.1038/s41534-024-00841-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00841-w","url":null,"abstract":"<p>Spectral characterization of noise environments that lead to the decoherence of qubits is critical to developing robust quantum technologies. While dynamical decoupling offers one of the most successful approaches to characterize noise spectra, it necessitates applying large sequences of <i>π</i> pulses that increase the complexity and cost of the method. Here, we introduce a noise spectroscopy method that utilizes only the Fourier transform of free induction decay or spin echo measurements, thus removing the need for the application many <i>π</i> pulses. We show that our method faithfully recovers the correct noise spectra for a variety of different environments (including 1/<i>f</i>-type noise) and outperforms previous dynamical decoupling schemes while significantly reducing their experimental overhead. We also discuss the experimental feasibility of our proposal and demonstrate its robustness in the presence of statistical measurement error. Our method is applicable to a wide range of quantum platforms and provides a simpler path toward a more accurate spectral characterization of quantum devices, thus offering possibilities for tailored decoherence mitigation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"59 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140954032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre-Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame
{"title":"High-fidelity four-photon GHZ states on chip","authors":"Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre-Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame","doi":"10.1038/s41534-024-00830-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00830-z","url":null,"abstract":"<p>Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of <span>({{{{mathcal{F}}}}}_{{{{{rm{GHZ}}}}}_{4}}=(86.0pm 0.4), %)</span>, and a purity of <span>({{{{mathcal{P}}}}}_{{{{{rm{GHZ}}}}}_{4}}=(76.3pm 0.6), %)</span>. The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"45 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140949601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Di Colandrea, Nazanin Dehghan, Alessio D’Errico, Ebrahim Karimi
{"title":"Fourier Quantum Process Tomography","authors":"Francesco Di Colandrea, Nazanin Dehghan, Alessio D’Errico, Ebrahim Karimi","doi":"10.1038/s41534-024-00844-7","DOIUrl":"https://doi.org/10.1038/s41534-024-00844-7","url":null,"abstract":"<p>The characterization of a quantum device is a crucial step in the development of quantum experiments. This is accomplished via Quantum Process Tomography, which combines the outcomes of different projective measurements to deliver a possible reconstruction of the underlying process. The tomography is typically performed by processing an overcomplete set of measurements and extracting the process matrix from maximum-likelihood estimation. Here, we introduce Fourier Quantum Process Tomography, a technique which requires a reduced number of measurements, and benchmark its performance against the standard maximum-likelihood approach. Fourier Quantum Process Tomography is based on measuring probability distributions in two conjugate spaces for different state preparations and projections. Exploiting the concept of phase retrieval, our scheme achieves a complete and robust characterization of the setup by processing a near-minimal set of measurements. We experimentally test the technique on different space-dependent polarization transformations, reporting average fidelities higher than 90% and significant computational advantage.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"60 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering holography with stabilizer graph codes","authors":"Gerard Anglès Munné, Valentin Kasper, Felix Huber","doi":"10.1038/s41534-024-00822-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00822-z","url":null,"abstract":"<p>The discovery of holographic codes established a surprising connection between quantum error correction and the anti-de Sitter-conformal field theory correspondence. Recent technological progress in artificial quantum systems renders the experimental realization of such holographic codes now within reach. Formulating the hyperbolic pentagon code in terms of a stabilizer graph code, we give gate sequences that are tailored to systems with long-range interactions. We show how to obtain encoding and decoding circuits for the hyperbolic pentagon code, before focusing on a small instance of the holographic code on twelve qubits. Our approach allows to verify holographic properties by partial decoding operations, recovering bulk degrees of freedom from their nearby boundary.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatially correlated classical and quantum noise in driven qubits","authors":"Ji Zou, Stefano Bosco, Daniel Loss","doi":"10.1038/s41534-024-00842-9","DOIUrl":"https://doi.org/10.1038/s41534-024-00842-9","url":null,"abstract":"<p>Correlated noise across multiple qubits poses a significant challenge for achieving scalable and fault-tolerant quantum processors. Despite recent experimental efforts to quantify this noise in various qubit architectures, a comprehensive understanding of its role in qubit dynamics remains elusive. Here, we present an analytical study of the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise. Surprisingly, we find that by operating the qubit system at low temperatures, where correlated quantum noise plays an important role, significant long-lived entanglement between qubits can be generated. Importantly, this generation process can be controlled on-demand by turning the qubit driving on and off. On the other hand, we demonstrate that by operating the system at a higher temperature, the crosstalk between qubits induced by the correlated noise is unexpectedly suppressed. We finally reveal the impact of spatio-temporally correlated 1/<i>f</i> noise on the decoherence rate, and how its temporal correlations restore lost entanglement. Our findings provide critical insights into not only suppressing crosstalk between qubits caused by correlated noise but also in effectively leveraging such noise as a beneficial resource for controlled entanglement generation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"61 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorenzo Cirigliano, Valentina Brosco, Claudio Castellano, Claudio Conti, Laura Pilozzi
{"title":"Optimal quantum key distribution networks: capacitance versus security","authors":"Lorenzo Cirigliano, Valentina Brosco, Claudio Castellano, Claudio Conti, Laura Pilozzi","doi":"10.1038/s41534-024-00828-7","DOIUrl":"https://doi.org/10.1038/s41534-024-00828-7","url":null,"abstract":"<p>The rate and security of quantum communications between users placed at arbitrary points of a quantum communication network depend on the structure of the network, on its extension and on the nature of the communication channels. In this work we propose a strategy for the optimization of trusted-relays based networks that intertwines classical network approaches and quantum information theory. Specifically, by suitably defining a quantum communication efficiency functional, we identify the optimal quantum communication connections through the network by balancing security and the quantum communication rate. The optimized network is then constructed as the network of the maximal quantum communication efficiency connections and its performance is evaluated by studying the scaling of average properties as functions of the number of nodes and of the network spatial extension.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"72 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140808479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hunting for quantum-classical crossover in condensed matter problems","authors":"Nobuyuki Yoshioka, Tsuyoshi Okubo, Yasunari Suzuki, Yuki Koizumi, Wataru Mizukami","doi":"10.1038/s41534-024-00839-4","DOIUrl":"https://doi.org/10.1038/s41534-024-00839-4","url":null,"abstract":"<p>The intensive pursuit for quantum advantage in terms of computational complexity has further led to a modernized crucial question of when and how will quantum computers outperform classical computers. The next milestone is undoubtedly the realization of quantum acceleration in practical problems. Here we provide a clear evidence and arguments that the primary target is likely to be condensed matter physics. Our primary contributions are summarized as follows: 1) Proposal of systematic error/runtime analysis on state-of-the-art classical algorithm based on tensor networks; 2) Dedicated and high-resolution analysis on quantum resource performed at the level of executable logical instructions; 3) Clarification of quantum-classical crosspoint for ground-state simulation to be within runtime of hours using only a few hundreds of thousand physical qubits for 2d Heisenberg and 2d Fermi-Hubbard models, assuming that logical qubits are encoded via the surface code with the physical error rate of <i>p</i> = 10<sup>−3</sup>. To our knowledge, we argue that condensed matter problems offer the earliest platform for demonstration of practical quantum advantage that is order-of-magnitude more feasible than ever known candidates, in terms of both qubit counts and total runtime.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"81 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafa Bal, Akshay A. Murthy, Shaojiang Zhu, Francesco Crisa, Xinyuan You, Ziwen Huang, Tanay Roy, Jaeyel Lee, David van Zanten, Roman Pilipenko, Ivan Nekrashevich, Andrei Lunin, Daniel Bafia, Yulia Krasnikova, Cameron J. Kopas, Ella O. Lachman, Duncan Miller, Josh Y. Mutus, Matthew J. Reagor, Hilal Cansizoglu, Jayss Marshall, David P. Pappas, Kim Vu, Kameshwar Yadavalli, Jin-Su Oh, Lin Zhou, Matthew J. Kramer, Florent Lecocq, Dominic P. Goronzy, Carlos G. Torres-Castanedo, P. Graham Pritchard, Vinayak P. Dravid, James M. Rondinelli, Michael J. Bedzyk, Mark C. Hersam, John Zasadzinski, Jens Koch, James A. Sauls, Alexander Romanenko, Anna Grassellino
{"title":"Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation","authors":"Mustafa Bal, Akshay A. Murthy, Shaojiang Zhu, Francesco Crisa, Xinyuan You, Ziwen Huang, Tanay Roy, Jaeyel Lee, David van Zanten, Roman Pilipenko, Ivan Nekrashevich, Andrei Lunin, Daniel Bafia, Yulia Krasnikova, Cameron J. Kopas, Ella O. Lachman, Duncan Miller, Josh Y. Mutus, Matthew J. Reagor, Hilal Cansizoglu, Jayss Marshall, David P. Pappas, Kim Vu, Kameshwar Yadavalli, Jin-Su Oh, Lin Zhou, Matthew J. Kramer, Florent Lecocq, Dominic P. Goronzy, Carlos G. Torres-Castanedo, P. Graham Pritchard, Vinayak P. Dravid, James M. Rondinelli, Michael J. Bedzyk, Mark C. Hersam, John Zasadzinski, Jens Koch, James A. Sauls, Alexander Romanenko, Anna Grassellino","doi":"10.1038/s41534-024-00840-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00840-x","url":null,"abstract":"<p>We present a transmon qubit fabrication technique that yields systematic improvements in <i>T</i><sub>1</sub> relaxation times. We encapsulate the surface of niobium and prevent the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface, this comparative investigation examining different capping materials, such as tantalum, aluminum, titanium nitride, and gold, as well as substrates across different qubit foundries demonstrates the detrimental impact that niobium oxides have on coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit <i>T</i><sub>1</sub> relaxation times 2–5 times longer than baseline qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 300 μs, with maximum values up to 600 μs. Our comparative structural and chemical analysis provides insight into why amorphous niobium oxides may induce higher losses compared to other amorphous oxides.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"2015 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circuit complexity of quantum access models for encoding classical data","authors":"Xiao-Ming Zhang, Xiao Yuan","doi":"10.1038/s41534-024-00835-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00835-8","url":null,"abstract":"<p>How to efficiently encode classical data is a fundamental task in quantum computing. While many existing works treat classical data encoding as a black box in oracle-based quantum algorithms, their explicit constructions are crucial for the efficiency of practical algorithm implementations. Here, we unveil the mystery of the classical data encoding black box and study the Clifford + <i>T</i> complexity in constructing several typical quantum access models. For general matrices (even including sparse ones), we prove that sparse-access input models and block-encoding both require nearly linear circuit complexities relative to the matrix dimension. We also give construction protocols achieving near-optimal gate complexities. On the other hand, the construction becomes efficient with respect to the data qubit when the matrix is a linear combination of polynomial terms of efficiently implementable unitaries. As a typical example, we propose improved block-encoding when these unitaries are Pauli strings. Our protocols are built upon improved quantum state preparation and a select oracle for Pauli strings, which hold independent values. Our access model constructions provide considerable flexibility, allowing for tunable ancillary qubit numbers and offering corresponding space-time trade-offs.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"117 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudio Bonizzoni, Alberto Ghirri, Fabio Santanni, Marco Affronte
{"title":"Quantum sensing of magnetic fields with molecular spins","authors":"Claudio Bonizzoni, Alberto Ghirri, Fabio Santanni, Marco Affronte","doi":"10.1038/s41534-024-00838-5","DOIUrl":"https://doi.org/10.1038/s41534-024-00838-5","url":null,"abstract":"<p>Spins are prototypical systems with the potential to probe magnetic fields down to the atomic scale limit. Exploiting their quantum nature through appropriate sensing protocols allows to enlarge their applicability to fields not always accessible by classical sensors. Here we first show that quantum sensing protocols for AC magnetic fields can be implemented with molecular spin ensembles embedded into hybrid quantum circuits. We then show that, using only echo detection at microwave frequency and no optical readout, Dynamical Decoupling protocols synchronized with the AC magnetic fields can enhance sensitivity up to <i>S</i> ≈ 10<sup>−10</sup> − 10<sup>−9</sup> T Hz<sup>−1/2</sup> with a low (4-5) number of applied pulses. These results paves the way for the development of strategies to exploit molecular spins as quantum sensors.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"82 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}