Unveiling quantum steering by quantum-classical uncertainty complementarity

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Kuan-Yi Lee, Jhen-Dong Lin, Karel Lemr, Antonín Černoch, Adam Miranowicz, Franco Nori, Huan-Yu Ku, Yueh-Nan Chen
{"title":"Unveiling quantum steering by quantum-classical uncertainty complementarity","authors":"Kuan-Yi Lee, Jhen-Dong Lin, Karel Lemr, Antonín Černoch, Adam Miranowicz, Franco Nori, Huan-Yu Ku, Yueh-Nan Chen","doi":"10.1038/s41534-025-01017-w","DOIUrl":null,"url":null,"abstract":"<p>One of the remarkable aspects of quantum steering is its ability to violate local uncertainty complementarity relations. In this vein of study, various steering witnesses have been developed. Here, we introduce a novel complementarity relation between the system’s quantum and classical uncertainties corresponding to the distillable coherence and the von Neumann entropy, respectively. We show that the proposed complementarity relation is tighter than the entropic uncertainty relation (EUR). Leveraging this result, we propose a steering witness that is more efficient than the EUR. From the operational perspective, the steering witness quantifies the amount of extra distillable coherence facilitated by quantum steerability. Notably, the proposed steering witness serves as a full entanglement measure for pure bipartite states–an ability that the EUR lacks. We also experimentally validate such a property through a photonic system. Furthermore, a deeper connection to the uncertainty principle is revealed by showcasing the steering-induced distillable coherence can quantify measurement incompatibility and quantum steerability under genuine incoherent operations. Our work establishes a clear quantitative and operational link between coherence and steering, which are vital resources of quantum technologies, and underscores our efforts in bridging the uncertainty principle with quantum coherence.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"7 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01017-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

One of the remarkable aspects of quantum steering is its ability to violate local uncertainty complementarity relations. In this vein of study, various steering witnesses have been developed. Here, we introduce a novel complementarity relation between the system’s quantum and classical uncertainties corresponding to the distillable coherence and the von Neumann entropy, respectively. We show that the proposed complementarity relation is tighter than the entropic uncertainty relation (EUR). Leveraging this result, we propose a steering witness that is more efficient than the EUR. From the operational perspective, the steering witness quantifies the amount of extra distillable coherence facilitated by quantum steerability. Notably, the proposed steering witness serves as a full entanglement measure for pure bipartite states–an ability that the EUR lacks. We also experimentally validate such a property through a photonic system. Furthermore, a deeper connection to the uncertainty principle is revealed by showcasing the steering-induced distillable coherence can quantify measurement incompatibility and quantum steerability under genuine incoherent operations. Our work establishes a clear quantitative and operational link between coherence and steering, which are vital resources of quantum technologies, and underscores our efforts in bridging the uncertainty principle with quantum coherence.

Abstract Image

量子经典不确定性互补性揭示量子导向
量子导向的一个显著方面是它能够违反局部不确定性互补关系。在这方面的研究,各种转向证人已经开发。在此,我们引入了系统的量子不确定性和经典不确定性之间的一种新的互补关系,分别对应于可蒸馏相干和冯·诺伊曼熵。我们证明了所提出的互补关系比熵不确定性关系(EUR)更紧密。利用这一结果,我们提出了一个比欧元更有效的转向见证。从操作的角度来看,转向见证量化了量子可导向性所促进的额外可提取相干性的数量。值得注意的是,提议的转向见证可以作为纯二部分状态的完整纠缠度量,这是欧元所缺乏的能力。我们还通过光子系统实验验证了这一特性。此外,通过展示在真实的非相干操作下,导向诱导的可蒸馏相干可以量化测量不相容和量子可导向性,揭示了与不确定性原理的更深层次的联系。我们的工作在相干性和转向之间建立了明确的定量和操作联系,这是量子技术的重要资源,并强调了我们在不确定性原理与量子相干性之间建立桥梁的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信