增强连续可变光学相位传感的变分量子算法

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Jens A. H. Nielsen, Mateusz J. Kicinski, Tummas N. Arge, Kannan Vijayadharan, Jonathan Foldager, Johannes Borregaard, Johannes Jakob Meyer, Jonas S. Neergaard-Nielsen, Tobias Gehring, Ulrik L. Andersen
{"title":"增强连续可变光学相位传感的变分量子算法","authors":"Jens A. H. Nielsen, Mateusz J. Kicinski, Tummas N. Arge, Kannan Vijayadharan, Jonathan Foldager, Johannes Borregaard, Johannes Jakob Meyer, Jonas S. Neergaard-Nielsen, Tobias Gehring, Ulrik L. Andersen","doi":"10.1038/s41534-024-00947-1","DOIUrl":null,"url":null,"abstract":"<p>Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy intermediate-scale quantum (NISQ) devices. Testing these algorithms on relevant hardware is crucial to investigate the effect of noise and imperfections and to assess their practical value. Here, we implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light, a key component for high-precision optical phase estimation. We investigate the ability of the algorithm to identify the optimal metrology process, including the optimization of the probe state and measurement strategy for small-angle optical phase sensing. Two different optimization strategies are employed, the first being a gradient descent optimizer using Gaussian parameter shift rules to estimate the gradient of the cost function directly from the measurements. The second strategy involves a gradient-free Bayesian optimizer, fine-tuning the system using the same cost function and trained on the data acquired through the gradient-dependent algorithm. We find that both algorithms can steer the experiment towards the optimal metrology process. However, they find minima not predicted by our theoretical model, demonstrating the strength of variational algorithms in modelling complex noise environments, a non-trivial task.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"111 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational quantum algorithm for enhanced continuous variable optical phase sensing\",\"authors\":\"Jens A. H. Nielsen, Mateusz J. Kicinski, Tummas N. Arge, Kannan Vijayadharan, Jonathan Foldager, Johannes Borregaard, Johannes Jakob Meyer, Jonas S. Neergaard-Nielsen, Tobias Gehring, Ulrik L. Andersen\",\"doi\":\"10.1038/s41534-024-00947-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy intermediate-scale quantum (NISQ) devices. Testing these algorithms on relevant hardware is crucial to investigate the effect of noise and imperfections and to assess their practical value. Here, we implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light, a key component for high-precision optical phase estimation. We investigate the ability of the algorithm to identify the optimal metrology process, including the optimization of the probe state and measurement strategy for small-angle optical phase sensing. Two different optimization strategies are employed, the first being a gradient descent optimizer using Gaussian parameter shift rules to estimate the gradient of the cost function directly from the measurements. The second strategy involves a gradient-free Bayesian optimizer, fine-tuning the system using the same cost function and trained on the data acquired through the gradient-dependent algorithm. We find that both algorithms can steer the experiment towards the optimal metrology process. However, they find minima not predicted by our theoretical model, demonstrating the strength of variational algorithms in modelling complex noise environments, a non-trivial task.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00947-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00947-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

变分量子算法(VQAs)是一种混合量子-经典方法,用于解决噪声中尺度量子(NISQ)器件上的各种问题。在相关硬件上测试这些算法对于研究噪声和缺陷的影响以及评估它们的实用价值至关重要。在此,我们实现了一种基于压缩光的变分算法,用于在连续变量平台上优化参数估计,压缩光是高精度光学相位估计的关键组件。我们研究了该算法识别最佳测量过程的能力,包括小角度光学相位传感探针状态和测量策略的优化。采用了两种不同的优化策略,第一种是梯度下降优化器,使用高斯参数移位规则直接从测量值中估计代价函数的梯度。第二种策略涉及无梯度贝叶斯优化器,使用相同的代价函数对系统进行微调,并对通过梯度相关算法获得的数据进行训练。结果表明,这两种算法都能将实验引向最优的计量过程。然而,他们发现我们的理论模型没有预测到最小值,这证明了变分算法在模拟复杂噪声环境(一项非平凡的任务)方面的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Variational quantum algorithm for enhanced continuous variable optical phase sensing

Variational quantum algorithm for enhanced continuous variable optical phase sensing

Variational quantum algorithms (VQAs) are hybrid quantum-classical approaches used for tackling a wide range of problems on noisy intermediate-scale quantum (NISQ) devices. Testing these algorithms on relevant hardware is crucial to investigate the effect of noise and imperfections and to assess their practical value. Here, we implement a variational algorithm designed for optimized parameter estimation on a continuous variable platform based on squeezed light, a key component for high-precision optical phase estimation. We investigate the ability of the algorithm to identify the optimal metrology process, including the optimization of the probe state and measurement strategy for small-angle optical phase sensing. Two different optimization strategies are employed, the first being a gradient descent optimizer using Gaussian parameter shift rules to estimate the gradient of the cost function directly from the measurements. The second strategy involves a gradient-free Bayesian optimizer, fine-tuning the system using the same cost function and trained on the data acquired through the gradient-dependent algorithm. We find that both algorithms can steer the experiment towards the optimal metrology process. However, they find minima not predicted by our theoretical model, demonstrating the strength of variational algorithms in modelling complex noise environments, a non-trivial task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信