Digital reconstruction of squeezed light for quantum information processing

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Huy Q. Nguyen, Ivan Derkach, Adnan A. E. Hajomer, Hou-Man Chin, Akash nag Oruganti, Ulrik L. Andersen, Vladyslav Usenko, Tobias Gehring
{"title":"Digital reconstruction of squeezed light for quantum information processing","authors":"Huy Q. Nguyen, Ivan Derkach, Adnan A. E. Hajomer, Hou-Man Chin, Akash nag Oruganti, Ulrik L. Andersen, Vladyslav Usenko, Tobias Gehring","doi":"10.1038/s41534-025-01018-9","DOIUrl":null,"url":null,"abstract":"<p>Squeezed light plays a vital role in quantum information processing. However, its highly sensitive nature presents significant practical challenges, particularly in remote detection, which traditionally requires complex systems such as active phase locking, clock synchronization, and polarization control. Here, we propose and demonstrate an asynchronous detection method for squeezed light eliminating the need for these complex systems. By employing radio-frequency heterodyne detection with a locally generated local oscillator and applying a series of digital unitary transformations, we successfully reconstruct squeezed states of light. We validate our approach in two key applications: the distribution of squeezed light over a 10 km fiber channel, and passive continuous-variables quantum key distribution based on squeezed vacuum states between two labs connected via deployed fiber. This demonstrates a practical digital reconstruction method for squeezed light, opening new avenues for practical distributed quantum sensing networks and high-performance, long-distance quantum communication using squeezed states.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"15 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01018-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Squeezed light plays a vital role in quantum information processing. However, its highly sensitive nature presents significant practical challenges, particularly in remote detection, which traditionally requires complex systems such as active phase locking, clock synchronization, and polarization control. Here, we propose and demonstrate an asynchronous detection method for squeezed light eliminating the need for these complex systems. By employing radio-frequency heterodyne detection with a locally generated local oscillator and applying a series of digital unitary transformations, we successfully reconstruct squeezed states of light. We validate our approach in two key applications: the distribution of squeezed light over a 10 km fiber channel, and passive continuous-variables quantum key distribution based on squeezed vacuum states between two labs connected via deployed fiber. This demonstrates a practical digital reconstruction method for squeezed light, opening new avenues for practical distributed quantum sensing networks and high-performance, long-distance quantum communication using squeezed states.

Abstract Image

量子信息处理中压缩光的数字重构
压缩光在量子信息处理中起着至关重要的作用。然而,它的高灵敏度提出了重大的实际挑战,特别是在远程检测中,传统上需要复杂的系统,如有源锁相、时钟同步和极化控制。在这里,我们提出并演示了一种用于压缩光的异步检测方法,消除了对这些复杂系统的需要。利用局域振荡器的射频外差检测和一系列的数字酉变换,我们成功地重建了光的压缩态。我们在两个关键应用中验证了我们的方法:在10公里光纤通道上分配压缩光,以及基于通过部署光纤连接的两个实验室之间的压缩真空态的被动连续变量量子密钥分配。这展示了一种实用的压缩光数字重建方法,为实用的分布式量子传感网络和使用压缩态的高性能、长距离量子通信开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信