Nature PhysicsPub Date : 2024-10-14DOI: 10.1038/s41567-024-02635-5
Michal P. Heller, Alexandre Serantes, Michał Spaliński, Benjamin Withers
{"title":"The space of transport coefficients allowed by causality","authors":"Michal P. Heller, Alexandre Serantes, Michał Spaliński, Benjamin Withers","doi":"10.1038/s41567-024-02635-5","DOIUrl":"10.1038/s41567-024-02635-5","url":null,"abstract":"As an effective theory, relativistic hydrodynamics is fixed by symmetries up to a set of transport coefficients. A lot of effort has been devoted to explicit calculations of these coefficients. Here we adopt a more general approach, deploying bootstrap techniques to rule out theories that are inconsistent with microscopic causality. What remains is a universal convex geometry in the space of transport coefficients, which we call the hydrohedron. The landscape of all consistent theories necessarily lies inside or on the edges of the hydrohedron. We analytically construct cross-sections of the hydrohedron corresponding to bounds on transport coefficients that appear in sound and diffusion modes’ dispersion relations for theories without stochastic fluctuations. Causality places fundamental limits on the hydrodynamic behaviour of relativistic systems that are independent of the underlying model.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1948-1954"},"PeriodicalIF":17.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02635-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-11DOI: 10.1038/s41567-024-02682-y
{"title":"Old tools, new insights","authors":"","doi":"10.1038/s41567-024-02682-y","DOIUrl":"10.1038/s41567-024-02682-y","url":null,"abstract":"Adapting an experimental tool for use in a new field can be as powerful as inventing a new technique.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1519-1519"},"PeriodicalIF":17.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02682-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-11DOI: 10.1038/s41567-024-02662-2
Miguel Gonçalves, Bruno Amorim, Flavio Riche, Eduardo V. Castro, Pedro Ribeiro
{"title":"Incommensurability enabled quasi-fractal order in 1D narrow-band moiré systems","authors":"Miguel Gonçalves, Bruno Amorim, Flavio Riche, Eduardo V. Castro, Pedro Ribeiro","doi":"10.1038/s41567-024-02662-2","DOIUrl":"10.1038/s41567-024-02662-2","url":null,"abstract":"A moiré potential—the superposition of two periodic potentials with different wavelengths—will either introduce a new periodicity into a system if the two potentials are commensurate or force the system to be quasiperiodic if they are not. Here we demonstrate that quasiperiodicity can change the ground-state properties of one-dimensional moiré systems with respect to their periodic counterparts. We show that although narrow bands play a role in enhancing interactions, for both commensurate and incommensurate structures, only quasiperiodicity is able to extend the ordered phase down to an infinitesimal interaction strength. In this regime, the state enabled by quasiperiodicity has contributions from electronic states with a very large number of wavevectors. This quasi-fractal regime cannot be stabilized in the commensurate case even in the presence of a narrow band. These findings suggest that quasiperiodicity may be a critical factor in stabilizing non-trivial ordered phases in interacting moiré structures and highlight that multifractal non-interacting phases might be particularly promising parent states. An incommensurate moiré pattern in a one-dimensional system is numerically shown to produce a quasi-fractal charge density wave ground state that originates from a parent multifractal critical phase.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1933-1940"},"PeriodicalIF":17.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-11DOI: 10.1038/s41567-024-02663-1
Xiong-Jun Liu
{"title":"Quantum matter in multifractal patterns","authors":"Xiong-Jun Liu","doi":"10.1038/s41567-024-02663-1","DOIUrl":"10.1038/s41567-024-02663-1","url":null,"abstract":"A fractal material exhibits self-similarity at different length scales across the system size. Theorists now show that an interacting one-dimensional quasiperiodic material can host a multifractal charge-density-wave phase.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1851-1852"},"PeriodicalIF":17.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-10DOI: 10.1038/s41567-024-02640-8
Christian Heide, Yuki Kobayashi, Sheikh Rubaiat Ul Haque, Shambhu Ghimire
{"title":"Ultrafast high-harmonic spectroscopy of solids","authors":"Christian Heide, Yuki Kobayashi, Sheikh Rubaiat Ul Haque, Shambhu Ghimire","doi":"10.1038/s41567-024-02640-8","DOIUrl":"10.1038/s41567-024-02640-8","url":null,"abstract":"High-harmonic spectroscopy, an ultrafast all-optical technique initially conceptualized in atomic and molecular systems, has now emerged as a powerful platform for studying the structure and dynamics of condensed matter. Unlike that in the gas phase, solid-state high-harmonic generation relies on the fundamental response from high atomic density and periodicity, leading to interband transitions and coherent driving of electrons and holes in their respective bands. These mechanisms make high-harmonic spectroscopy particularly sensitive to the electronic band structure, topological properties and many-body correlations in condensed media. An advantage of high-harmonic spectroscopy over other spectroscopic methods is its ability to probe ultrafast phenomena, capturing femto- to attosecond dynamics of multi-band and strongly correlated electron interactions in solids. In this Review, we discuss the latest experimental and theoretical advances in ultrafast high-harmonic spectroscopy of solids and provide perspectives for future research in this field. High-harmonic spectroscopy on solids is an ultrafast all-optical technique to study the structure and dynamics of materials. This Review discusses areas of condensed-matter physics where this technique can provide particular insight.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1546-1557"},"PeriodicalIF":17.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-10DOI: 10.1038/s41567-024-02653-3
Kyle Hwangbo, Elliott Rosenberg, John Cenker, Qianni Jiang, Haidan Wen, Di Xiao, Jiun-Haw Chu, Xiaodong Xu
{"title":"Strain tuning of vestigial three-state Potts nematicity in a correlated antiferromagnet","authors":"Kyle Hwangbo, Elliott Rosenberg, John Cenker, Qianni Jiang, Haidan Wen, Di Xiao, Jiun-Haw Chu, Xiaodong Xu","doi":"10.1038/s41567-024-02653-3","DOIUrl":"10.1038/s41567-024-02653-3","url":null,"abstract":"Electronic nematicity is a state of matter in which rotational symmetry is spontaneously broken and translational symmetry is preserved. In strongly correlated materials, nematicity often emerges from fluctuations of a multicomponent primary order, such as spin or charge density waves, and is termed vestigial nematicity. One widely studied example is Ising nematicity, which arises as a vestigial order of collinear antiferromagnetism in the tetragonal iron pnictide superconductors. Because nematic directors in crystals are restricted by the underlying crystal symmetry, recently identified quantum materials with three-fold rotational symmetry offer a new platform to investigate nematic order with three-state Potts character. Here we demonstrate strain control of three-state Potts nematicity as a vestigial order of zigzag antiferromagnetism in FePSe3. Optical linear dichroism measurements reveal the nematic state and demonstrate the rotation of the nematic director by uniaxial strain. We show that the nature of the nematic phase transition can also be controlled by strain, inducing a smooth crossover transition between a Potts nematic transition and an Ising nematic flop transition. Elastocaloric measurements demonstrate the signatures of two coupled phase transitions, indicating that the vestigial nematic transition is separated from the antiferromagnetic transition. This establishes FePSe3 as a system to explore three-state Potts vestigial nematicity. Correlated materials can show nematicity, but the nematic state usually exhibits even-fold rotational symmetry. Now, a correlated antiferromagnet is shown to host a three-state Potts vestigial nematicity that can be controlled by external strain.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1888-1895"},"PeriodicalIF":17.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-09DOI: 10.1038/s41567-024-02658-y
Hyun-Woo Lee, Tatiana G. Rappoport
{"title":"Chirality and topology team up to produce orbital monopole","authors":"Hyun-Woo Lee, Tatiana G. Rappoport","doi":"10.1038/s41567-024-02658-y","DOIUrl":"10.1038/s41567-024-02658-y","url":null,"abstract":"Electrons in a chiral topological material exhibit a unique orbital angular momentum profile in momentum space that resembles magnetic monopoles. It gives an opportunity to utilize the orbital motion of electrons for information processing — so-called orbitronics.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1857-1858"},"PeriodicalIF":17.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-08DOI: 10.1038/s41567-024-02651-5
Panyu Chen, Scott Weady, Severine Atis, Takumi Matsuzawa, Michael J. Shelley, William T. M. Irvine
{"title":"Self-propulsion, flocking and chiral active phases from particles spinning at intermediate Reynolds numbers","authors":"Panyu Chen, Scott Weady, Severine Atis, Takumi Matsuzawa, Michael J. Shelley, William T. M. Irvine","doi":"10.1038/s41567-024-02651-5","DOIUrl":"https://doi.org/10.1038/s41567-024-02651-5","url":null,"abstract":"<p>Vorticity, a measure of the local rate of rotation of a fluid element, is the driver of incompressible flow. In viscous fluids, powering bulk flows requires the continuous injection of vorticity from boundaries to counteract the diffusive effects of viscosity. Here we power a flow from within by suspending approximately cylindrical particles and magnetically driving them to rotate at Reynolds numbers in the intermediate range. We find that a single particle generates a localized three-dimensional region of vorticity around it—which we call a vortlet—that drives a number of remarkable behaviours. Slight asymmetries in the particle shape can deform the vortlet and cause the particle to self-propel. Interactions between vortlets are similarly rich, generating bound dynamical states. When a large number of vortlets interact, they spontaneously form collectively moving flocks. These flocks remain coherent while propelling, splitting and merging. If enough particles are added so as to saturate the flow chamber, a homogeneous three-dimensional active chiral fluid of vortlets is formed, which can be manipulated with gravity or flow chamber boundaries, leading to lively collective dynamics. Our findings demonstrate an inertial regime for synthetic active matter, provide a controlled physical system for the quantitative study of three-dimensional flocking in non-sentient systems and establish a platform for the study of three-dimensional active chiral fluids.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"55 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-08DOI: 10.1038/s41567-024-02652-4
Christina L. Hueschen, Li-av Segev-Zarko, Jian-Hua Chen, Mark A. LeGros, Carolyn A. Larabell, John C. Boothroyd, Rob Phillips, Alexander R. Dunn
{"title":"Emergent actin flows explain distinct modes of gliding motility","authors":"Christina L. Hueschen, Li-av Segev-Zarko, Jian-Hua Chen, Mark A. LeGros, Carolyn A. Larabell, John C. Boothroyd, Rob Phillips, Alexander R. Dunn","doi":"10.1038/s41567-024-02652-4","DOIUrl":"10.1038/s41567-024-02652-4","url":null,"abstract":"During host infection, Toxoplasma gondii and related unicellular parasites move using gliding, which differs fundamentally from other known mechanisms of eukaryotic cell motility. Gliding is thought to be powered by a thin layer of flowing filamentous (F)-actin sandwiched between the plasma membrane and a myosin-covered inner membrane complex. How this surface actin layer drives the various gliding modes observed in experiments—helical, circular, twirling and patch, pendulum or rolling—is unclear. Here we suggest that F-actin flows arise through self-organization and develop a continuum model of emergent F-actin flow within the confines provided by Toxoplasma geometry. In the presence of F-actin turnover, our model predicts the emergence of a steady-state mode in which actin transport is largely directed rearward. Removing F-actin turnover leads to actin patches that recirculate up and down the cell, which we observe experimentally for drug-stabilized actin bundles in live Toxoplasma gondii parasites. These distinct self-organized actin states can account for observed gliding modes, illustrating how different forms of gliding motility can emerge as an intrinsic consequence of the self-organizing properties of F-actin flow in a confined geometry. Unicellular parasites, such as Toxoplasma gondii, can use different forms of gliding motions when infecting a host. These motility modes arise from the self-organizing properties of filamentous actin flow at the surface of these parasitic cells.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1989-1996"},"PeriodicalIF":17.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02652-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}