Nature PhysicsPub Date : 2024-11-01DOI: 10.1038/s41567-024-02669-9
Michael J. Steel
{"title":"Diffusive light pipes","authors":"Michael J. Steel","doi":"10.1038/s41567-024-02669-9","DOIUrl":"https://doi.org/10.1038/s41567-024-02669-9","url":null,"abstract":"Optical waveguides that route light are a core technology of modern photonics and the bedrock of the global communications network. A surprising diffusion mechanism for guiding light has now been identified, and it is strangely close to home.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-11-01DOI: 10.1038/s41567-024-02667-x
Zejin Rao, Changhao Meng, Youcai Han, Liping Zhu, Kun Ding, Zhenghua An
{"title":"Braiding reflectionless states in non-Hermitian magnonics","authors":"Zejin Rao, Changhao Meng, Youcai Han, Liping Zhu, Kun Ding, Zhenghua An","doi":"10.1038/s41567-024-02667-x","DOIUrl":"https://doi.org/10.1038/s41567-024-02667-x","url":null,"abstract":"<p>A thorough understanding of the topological classifications of non-Hermitian energy bands is essential for advancing non-Hermitian band theory and its applications. As evidenced in various disciplines of physics, including optics, electronics and acoustics, the process of braiding plays a crucial role in the classification of non-Hermitian bands that manifest topological characteristics. Here we demonstrate topological braiding of both reflectionless states and resonant states in non-Hermitian magnons, unveiling a reversal in their braiding handedness. Furthermore, we constitute parity–time symmetric reflectionless scattering modes, along with their degenerate exceptional points. Our results not only underscore the importance of braided scattering states, but also establish magnonics as a versatile platform for exploring non-Hermitian band theory and developing magnon-based applications, including topological energy transfer, tunable absorbers and logic circuits.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-11-01DOI: 10.1038/s41567-024-02674-y
Haoxin Zhou
{"title":"No heat flow in charge-neutral graphene","authors":"Haoxin Zhou","doi":"10.1038/s41567-024-02674-y","DOIUrl":"https://doi.org/10.1038/s41567-024-02674-y","url":null,"abstract":"The ground state of electrons in charge-neutral graphene in a strong magnetic field has not been conclusively identified. Thermal transport measurements narrow down the possible candidates, with evidence that the ground state does not conduct heat.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-11-01DOI: 10.1038/s41567-024-02665-z
Kevin J. Mitchell, Vytautas Gradauskas, Jack Radford, Ilya Starshynov, Samuel Nerenberg, Ewan M. Wright, Daniele Faccio
{"title":"Energy transport in diffusive waveguides","authors":"Kevin J. Mitchell, Vytautas Gradauskas, Jack Radford, Ilya Starshynov, Samuel Nerenberg, Ewan M. Wright, Daniele Faccio","doi":"10.1038/s41567-024-02665-z","DOIUrl":"https://doi.org/10.1038/s41567-024-02665-z","url":null,"abstract":"<p>The guiding and transport of energy, for example, of electromagnetic waves, underpins many modern technologies, ranging from long-distance optical fibre telecommunications to on-chip optical processors. Traditionally, a mechanism is required that exponentially localizes the waves or particles in the confinement region, such as total internal reflection at a boundary. Here we introduce a waveguiding mechanism that relies on a different origin for the exponential confinement and that arises owing to the physics of diffusion. We demonstrate this concept using light and show that the photon density can propagate as a guided mode along a core structure embedded in a scattering opaque material, enhancing light transmission by orders of magnitude and along non-trivial, such as curved, trajectories. This waveguiding mechanism can also occur naturally, for example, in the cerebrospinal fluid surrounding the brain and along tendons in the human body, and is to be expected in other systems that follow the same physics such as neutron diffusion.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-31DOI: 10.1038/s41567-024-02671-1
Alicia J. Kollár
{"title":"Superconducting circuits feel the pull of synthetic magnetism","authors":"Alicia J. Kollár","doi":"10.1038/s41567-024-02671-1","DOIUrl":"https://doi.org/10.1038/s41567-024-02671-1","url":null,"abstract":"Superconducting qubits can be fabricated and controlled in large numbers, which makes them an appealing platform for quantum simulations of many-body physics. However, a scalable way of implementing electromagnetism has been lacking — until now.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-30DOI: 10.1038/s41567-024-02661-3
Ilan T. Rosen, Sarah Muschinske, Cora N. Barrett, Arkya Chatterjee, Max Hays, Michael A. DeMarco, Amir H. Karamlou, David A. Rower, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Jeffrey A. Grover, William D. Oliver
{"title":"A synthetic magnetic vector potential in a 2D superconducting qubit array","authors":"Ilan T. Rosen, Sarah Muschinske, Cora N. Barrett, Arkya Chatterjee, Max Hays, Michael A. DeMarco, Amir H. Karamlou, David A. Rower, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Jeffrey A. Grover, William D. Oliver","doi":"10.1038/s41567-024-02661-3","DOIUrl":"https://doi.org/10.1038/s41567-024-02661-3","url":null,"abstract":"<p>Superconducting quantum processors are a compelling platform for analogue quantum simulation due to the precision control, fast operation and site-resolved readout inherent to the hardware. Arrays of coupled superconducting qubits natively emulate the dynamics of interacting particles according to the Bose–Hubbard model. However, many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields. Here we emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator. We realize a broadly adjustable synthetic magnetic vector potential by applying continuous modulation tones to all qubits. We verify that the synthetic vector potential obeys the required properties of electromagnetism: a spatially varying vector potential breaks time-reversal symmetry and generates a gauge-invariant synthetic magnetic field, and a temporally varying vector potential produces a synthetic electric field. We demonstrate that the Hall effect—the transverse deflection of a charged particle propagating in an electromagnetic field—exists in the presence of the synthetic electromagnetic field.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-29DOI: 10.1038/s41567-024-02685-9
Dawn Graninger
{"title":"A push for planetary defence","authors":"Dawn Graninger","doi":"10.1038/s41567-024-02685-9","DOIUrl":"https://doi.org/10.1038/s41567-024-02685-9","url":null,"abstract":"Nuclear explosives are the most promising method for steering a large asteroid away from Earth and mitigating an impact. Laboratory experiments with X-ray pulses have now mimicked such an event, demonstrating how efficient this technique is.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-29DOI: 10.1038/s41567-024-02672-0
R. Delagrange, M. Garg, G. Le Breton, A. Zhang, Q. Dong, Y. Jin, K. Watanabe, T. Taniguchi, P. Roulleau, O. Maillet, P. Roche, F. D. Parmentier
{"title":"Vanishing bulk heat flow in the ŒΩ = 0 quantum Hall ferromagnet in monolayer graphene","authors":"R. Delagrange, M. Garg, G. Le Breton, A. Zhang, Q. Dong, Y. Jin, K. Watanabe, T. Taniguchi, P. Roulleau, O. Maillet, P. Roche, F. D. Parmentier","doi":"10.1038/s41567-024-02672-0","DOIUrl":"https://doi.org/10.1038/s41567-024-02672-0","url":null,"abstract":"<p>Undoped graphene is a gapless semiconductor; however, when placed under a high perpendicular magnetic field and cooled to low temperature, it develops an insulating state. This state, dubbed <i>ŒΩ</i>‚Äâ=‚Äâ0, is due to the interplay between electronic interactions and the four-fold spin and valley degeneracies in the flat band formed by the <i>n</i>‚Äâ=‚Äâ0 Landau level. The nature of the ground state of <i>ŒΩ</i>‚Äâ=‚Äâ0, including its spin and valley polarization, is still under debate. Here we observe vanishing bulk thermal transport in monolayer at <i>ŒΩ</i>‚Äâ=‚Äâ0, in contradiction with the expected ground state, which is predicted to have finite thermal conductance even at very low temperature. Our results highlight the need for further investigations on the nature of <i>ŒΩ</i>‚Äâ=‚Äâ0.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-29DOI: 10.1038/s41567-024-02686-8
Padma Radhakrishnan, Ksenia S. Rabinovich, Alexander V. Boris, Katrin Fürsich, Matteo Minola, Georg Christiani, Gennady Logvenov, Bernhard Keimer, Eva Benckiser
{"title":"Imprinted atomic displacements drive spin–orbital order in a vanadate perovskite","authors":"Padma Radhakrishnan, Ksenia S. Rabinovich, Alexander V. Boris, Katrin Fürsich, Matteo Minola, Georg Christiani, Gennady Logvenov, Bernhard Keimer, Eva Benckiser","doi":"10.1038/s41567-024-02686-8","DOIUrl":"https://doi.org/10.1038/s41567-024-02686-8","url":null,"abstract":"<p>Perovskites with the generic composition <i>AB</i>O<sub>3</sub> exhibit an enormous variety of quantum states, such as orbital order, magnetism and superconductivity. Their flexible and comparatively simple structure allows for straightforward chemical substitution and cube-on-cube combination of different compounds in atomically sharp epitaxial heterostructures. Many of the diverse physical properties of perovskites are determined by small deviations from the ideal cubic perovskite structure, which are challenging to control. Here we show that directional imprinting of atomic displacements in the antiferromagnetic Mott insulator YVO<sub>3</sub> can be achieved by depositing epitaxial films on different facets of the same isostructural substrate. These facets were chosen such that other well-known control parameters, including lattice and polarity mismatch with the overlayer, remain nearly unchanged. We observe signatures of staggered orbital and magnetic order and demonstrate distinct spin–orbital ordering patterns on different facets. We attribute these results to the influence of specific octahedral rotation and cation displacement patterns, which are imprinted by the substrate facet, on the covalency of the bonds and the superexchange interactions in YVO<sub>3</sub>. Our results show that substrate-induced templating of lattice distortion patterns constitutes a pathway for materials design beyond established strain-engineering strategies.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2024-10-29DOI: 10.1038/s41567-024-02673-z
Ravi Kumar, Saurabh Kumar Srivastav, Ujjal Roy, Ujjawal Singhal, K. Watanabe, T. Taniguchi, Vibhor Singh, P. Roulleau, Anindya Das
{"title":"Absence of heat flow in ν = 0 quantum Hall ferromagnet in bilayer graphene","authors":"Ravi Kumar, Saurabh Kumar Srivastav, Ujjal Roy, Ujjawal Singhal, K. Watanabe, T. Taniguchi, Vibhor Singh, P. Roulleau, Anindya Das","doi":"10.1038/s41567-024-02673-z","DOIUrl":"https://doi.org/10.1038/s41567-024-02673-z","url":null,"abstract":"<p>The charge neutrality point of bilayer graphene, denoted as the <i>ν</i> = 0 state, manifests competing phases marked by spontaneous ordering of the spin, valley and layer degrees of freedom under external magnetic and electric fields. However, due to their electrically insulating nature, identifying these phases through electrical conductance measurements is a challenge. A recent theoretical proposal suggests that thermal transport measurements can detect these competing phases. Here we experimentally show that the bulk thermal transport of the <i>ν</i> = 0 state in bilayer graphene vanishes. This is in contrast to the theory, which predicts a finite thermal conductance in the <i>ν</i> = 0 state. By varying the external electric field and conducting temperature-dependent measurements, our results suggest that there are gapped collective excitations in the <i>ν</i> = 0 state. Our findings underscore the necessity for further investigations into the nature of the <i>ν</i> = 0 state.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":null,"pages":null},"PeriodicalIF":19.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}