Nature Physics最新文献

筛选
英文 中文
Observation of chiral edge transport in a rapidly rotating quantum gas 快速旋转量子气体中的手性边缘传输观测
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-09-06 DOI: 10.1038/s41567-024-02617-7
Ruixiao Yao, Sungjae Chi, Biswaroop Mukherjee, Airlia Shaffer, Martin Zwierlein, Richard J. Fletcher
{"title":"Observation of chiral edge transport in a rapidly rotating quantum gas","authors":"Ruixiao Yao, Sungjae Chi, Biswaroop Mukherjee, Airlia Shaffer, Martin Zwierlein, Richard J. Fletcher","doi":"10.1038/s41567-024-02617-7","DOIUrl":"10.1038/s41567-024-02617-7","url":null,"abstract":"The frictionless directional propagation of particles at the boundary of topological materials is a striking transport phenomenon. These chiral edge modes lie at the heart of the integer and fractional quantum Hall effects, and their robustness against noise and disorder reflects the quantization of Hall conductivity in these systems. Despite their importance, the controllable injection of edge modes, and direct imaging of their propagation, structure and dynamics, remains challenging. Here we demonstrate the distillation of chiral edge modes in a rapidly rotating bosonic superfluid confined by an optical boundary. By tuning the wall sharpness, we reveal the smooth crossover between soft wall behaviour in which the propagation speed is proportional to wall steepness and the hard wall regime that exhibits chiral free particles. From the skipping motion of atoms along the boundary we infer the energy gap between the ground and first excited edge bands, and reveal its evolution from the bulk Landau level splitting for a soft boundary to the hard wall limit. Finally, we demonstrate the robustness of edge propagation against disorder by projecting an optical obstacle that is static in the rotating frame. Edge modes are a key feature of topological materials, but their propagation is difficult to directly observe in condensed matter systems. The controlled injection and propagation of chiral edge modes has now been shown in a rotating ultracold gas.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1726-1731"},"PeriodicalIF":17.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexity and order in approximate quantum error-correcting codes 近似量子纠错码的复杂性和有序性
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-09-03 DOI: 10.1038/s41567-024-02621-x
Jinmin Yi, Weicheng Ye, Daniel Gottesman, Zi-Wen Liu
{"title":"Complexity and order in approximate quantum error-correcting codes","authors":"Jinmin Yi, Weicheng Ye, Daniel Gottesman, Zi-Wen Liu","doi":"10.1038/s41567-024-02621-x","DOIUrl":"10.1038/s41567-024-02621-x","url":null,"abstract":"Some form of quantum error correction is necessary to produce large-scale fault-tolerant quantum computers and finds broad relevance in physics. Most studies customarily assume exact correction. However, codes that may only enable approximate quantum error correction (AQEC) could be useful and intrinsically important in many practical and physical contexts. Here we establish rigorous connections between quantum circuit complexity and AQEC capability. Our analysis covers systems with both all-to-all connectivity and geometric scenarios like lattice systems. To this end, we introduce a type of code parameter that we call subsystem variance, which is closely related to the optimal AQEC precision. For a code encoding k logical qubits in n physical qubits, we find that if the subsystem variance is below an O(k/n) threshold, then any state in the code subspace must obey certain circuit complexity lower bounds, which identify non-trivial phases of codes. This theory of AQEC provides a versatile framework for understanding quantum complexity and order in many-body quantum systems, generating new insights for wide-ranging important physical scenarios such as topological order and critical quantum systems. Our results suggest that O(1/n) represents a common, physically profound scaling threshold of subsystem variance for features associated with non-trivial quantum order. Approximate—rather than exact—quantum error correction is a useful but relatively unexplored idea in quantum computing and many-body physics. A theoretical framework has now been established based on connections with quantum circuit complexity.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1798-1803"},"PeriodicalIF":17.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opportunities in nanoscale probing of laser-driven phase transitions 激光驱动相变的纳米级探测机遇
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-28 DOI: 10.1038/s41567-024-02603-z
Michael Yannai, Matan Haller, Ron Ruimy, Alexey Gorlach, Nicholas Rivera, Dmitri N. Basov, Ido Kaminer
{"title":"Opportunities in nanoscale probing of laser-driven phase transitions","authors":"Michael Yannai, Matan Haller, Ron Ruimy, Alexey Gorlach, Nicholas Rivera, Dmitri N. Basov, Ido Kaminer","doi":"10.1038/s41567-024-02603-z","DOIUrl":"10.1038/s41567-024-02603-z","url":null,"abstract":"For several decades, optical near-field microscopy has facilitated pioneering investigations of photonic excitations at the nanoscale. In recent years, near-field microscopy of terahertz fields has emerged as an important tool for experiments involving phononic and electronic phenomena, rich spatiotemporal dynamics and highly nonlinear processes. Building on this foundation, this Perspective elucidates the transformative opportunities provided by terahertz near-field microscopy to probe ultrafast phase transitions, helping to tackle previously inaccessible challenges of condensed matter physics. Laser-driven phase transitions in many systems are accompanied by the generation of terahertz pulses with spatiotemporal features governed by the complex physics underlying the phase transition. The characterization of these emitted pulses using terahertz near-field microscopy techniques could therefore support the investigation of ultrafast phase transition dynamics. This approach could, for example, allow the observation of ultrafast topological transitions in quantum materials, showcasing its ability to clarify the dynamic processes underlying phase changes. Optical near-field microscopy has facilitated our understanding of nanophotonics. This Perspective explores the opportunities that near-field studies of terahertz fields provide for ultrafast phase transitions in condensed matter systems.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 9","pages":"1383-1388"},"PeriodicalIF":17.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensionality crossover to a two-dimensional vestigial nematic state from a three-dimensional antiferromagnet in a honeycomb van der Waals magnet 从蜂巢范德瓦耳斯磁体中的三维反铁磁体到二维残余向列状态的维度交叉
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-26 DOI: 10.1038/s41567-024-02618-6
Zeliang Sun, Gaihua Ye, Chengkang Zhou, Mengqi Huang, Nan Huang, Xilong Xu, Qiuyang Li, Guoxin Zheng, Zhipeng Ye, Cynthia Nnokwe, Lu Li, Hui Deng, Li Yang, David Mandrus, Zi Yang Meng, Kai Sun, Chunhui Rita Du, Rui He, Liuyan Zhao
{"title":"Dimensionality crossover to a two-dimensional vestigial nematic state from a three-dimensional antiferromagnet in a honeycomb van der Waals magnet","authors":"Zeliang Sun, Gaihua Ye, Chengkang Zhou, Mengqi Huang, Nan Huang, Xilong Xu, Qiuyang Li, Guoxin Zheng, Zhipeng Ye, Cynthia Nnokwe, Lu Li, Hui Deng, Li Yang, David Mandrus, Zi Yang Meng, Kai Sun, Chunhui Rita Du, Rui He, Liuyan Zhao","doi":"10.1038/s41567-024-02618-6","DOIUrl":"10.1038/s41567-024-02618-6","url":null,"abstract":"The effects of fluctuations and disorder, which are substantially enhanced in reduced dimensionalities, can play a crucial role in producing non-trivial phases of matter such as vestigial orders characterized by a composite order parameter. However, fluctuation-driven magnetic phases in low dimensions have remained relatively unexplored. Here we demonstrate a phase transition from the zigzag antiferromagnetic order in the three-dimensional bulk to a Z3 vestigial Potts nematicity in two-dimensional few-layer samples of van der Waals magnet NiPS3. Our spin relaxometry and optical spectroscopy measurements reveal that the spin fluctuations are enhanced over the gigahertz to terahertz range as the layer number of NiPS3 reduces. Monte Carlo simulations corroborate the experimental finding of threefold rotational symmetry breaking but show that the translational symmetry is restored in thin layers of NiPS3. Therefore, our results show that strong quantum fluctuations can stabilize an unconventional magnetic phase after destroying a more conventional one. Magnetic phases that are stabilized by quantum fluctuations in low dimensions are rare. A thickness-dependent crossover from three-dimensional antiferromagnetism to a two-dimensional vestigial nematic state that is driven by fluctuations has now been observed.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1764-1771"},"PeriodicalIF":17.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal symmetry breaking passes the superfluid test 宇宙对称性破缺通过超流体检验
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-21 DOI: 10.1038/s41567-024-02609-7
Adolfo del Campo, Seong-Ho Shinn
{"title":"Universal symmetry breaking passes the superfluid test","authors":"Adolfo del Campo, Seong-Ho Shinn","doi":"10.1038/s41567-024-02609-7","DOIUrl":"10.1038/s41567-024-02609-7","url":null,"abstract":"The Kibble–Zurek mechanism is a key framework for describing the dynamics of continuous phase transitions. Recent experiments with ultracold gases, employing alternative methods to create a superfluid, highlight its universality.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1523-1524"},"PeriodicalIF":17.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nematic proteins on the treadmill 跑步机上的线粒体蛋白质
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-21 DOI: 10.1038/s41567-024-02615-9
Zhixin Lyu
{"title":"Nematic proteins on the treadmill","authors":"Zhixin Lyu","doi":"10.1038/s41567-024-02615-9","DOIUrl":"10.1038/s41567-024-02615-9","url":null,"abstract":"Understanding the mechanism of bacterial cell division is important in both fundamental and applied biology. Now, researchers have investigated the self-organization of cytoskeletal filaments and the role nematic ordering plays in cell division.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1534-1535"},"PeriodicalIF":17.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots 评估硅量子点中高保真双量子比特栅极的误差
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-20 DOI: 10.1038/s41567-024-02614-w
Tuomo Tanttu, Wee Han Lim, Jonathan Y. Huang, Nard Dumoulin Stuyck, Will Gilbert, Rocky Y. Su, MengKe Feng, Jesus D. Cifuentes, Amanda E. Seedhouse, Stefan K. Seritan, Corey I. Ostrove, Kenneth M. Rudinger, Ross C. C. Leon, Wister Huang, Christopher C. Escott, Kohei M. Itoh, Nikolay V. Abrosimov, Hans-Joachim Pohl, Michael L. W. Thewalt, Fay E. Hudson, Robin Blume-Kohout, Stephen D. Bartlett, Andrea Morello, Arne Laucht, Chih Hwan Yang, Andre Saraiva, Andrew S. Dzurak
{"title":"Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots","authors":"Tuomo Tanttu, Wee Han Lim, Jonathan Y. Huang, Nard Dumoulin Stuyck, Will Gilbert, Rocky Y. Su, MengKe Feng, Jesus D. Cifuentes, Amanda E. Seedhouse, Stefan K. Seritan, Corey I. Ostrove, Kenneth M. Rudinger, Ross C. C. Leon, Wister Huang, Christopher C. Escott, Kohei M. Itoh, Nikolay V. Abrosimov, Hans-Joachim Pohl, Michael L. W. Thewalt, Fay E. Hudson, Robin Blume-Kohout, Stephen D. Bartlett, Andrea Morello, Arne Laucht, Chih Hwan Yang, Andre Saraiva, Andrew S. Dzurak","doi":"10.1038/s41567-024-02614-w","DOIUrl":"10.1038/s41567-024-02614-w","url":null,"abstract":"Achieving high-fidelity entangling operations between qubits consistently is essential for the performance of multi-qubit systems. Solid-state platforms are particularly exposed to errors arising from materials-induced variability between qubits, which leads to performance inconsistencies. Here we study the errors in a spin qubit processor, tying them to their physical origins. We use this knowledge to demonstrate consistent and repeatable operation with above 99% fidelity of two-qubit gates in the technologically important silicon metal-oxide-semiconductor quantum dot platform. Analysis of the physical errors and fidelities in multiple devices over extended periods allows us to ensure that we capture the variation and the most common error types. Physical error sources include the slow nuclear and electrical noise on single qubits and contextual noise that depends on the applied control sequence. Furthermore, we investigate the impact of qubit design, feedback systems and robust gate design to inform the design of future scalable, high-fidelity control strategies. Our results highlight both the capabilities and challenges for the scaling-up of silicon spin-based qubits into full-scale quantum processors. For solid-state qubits, the material environment hosts sources of errors that vary in time and space. This systematic analysis of errors affecting high-fidelity two-qubit gates in silicon can inform the design of large-scale quantum computers.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1804-1809"},"PeriodicalIF":17.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02614-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-enhanced metrology with large Fock states 大 Fock 态量子增强计量学
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-20 DOI: 10.1038/s41567-024-02619-5
Xiaowei Deng, Sai Li, Zi-Jie Chen, Zhongchu Ni, Yanyan Cai, Jiasheng Mai, Libo Zhang, Pan Zheng, Haifeng Yu, Chang-Ling Zou, Song Liu, Fei Yan, Yuan Xu, Dapeng Yu
{"title":"Quantum-enhanced metrology with large Fock states","authors":"Xiaowei Deng, Sai Li, Zi-Jie Chen, Zhongchu Ni, Yanyan Cai, Jiasheng Mai, Libo Zhang, Pan Zheng, Haifeng Yu, Chang-Ling Zou, Song Liu, Fei Yan, Yuan Xu, Dapeng Yu","doi":"10.1038/s41567-024-02619-5","DOIUrl":"10.1038/s41567-024-02619-5","url":null,"abstract":"Quantum metrology uses non-classical states, such as Fock states with a specific number of photons, to achieve an advantage over classical sensing methods. Typically, quantum metrological performance can be enhanced by increasing the involved excitation numbers, for example, by using large-photon-number Fock states. However, manipulating these states and demonstrating a quantum metrological advantage is experimentally challenging. Here we present an efficient method for generating large Fock states approaching 100 photons within a superconducting microwave cavity through the development of a programmable photon number filter. Using these states in displacement and phase measurements, we demonstrate quantum-enhanced metrology approaching the Heisenberg scaling for 40-photon Fock states and achieve a maximum metrological gain of up to 14.8 dB, highlighting the metrological advantages of large Fock states. Our study could be readily extended to mechanical and optical systems, promising potential applications in weak force detection and dark matter searches. Non-classical states with a large, definite number of photons can now be produced in a superconducting cavity and used for quantum-enhanced sensing.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 12","pages":"1874-1880"},"PeriodicalIF":17.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02619-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise precognition 精确预知
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-13 DOI: 10.1038/s41567-024-02623-9
Karen Mudryk
{"title":"Precise precognition","authors":"Karen Mudryk","doi":"10.1038/s41567-024-02623-9","DOIUrl":"10.1038/s41567-024-02623-9","url":null,"abstract":"","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 8","pages":"1230-1230"},"PeriodicalIF":17.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics pushes peak performance 物理学推动高峰性能
IF 17.6 1区 物理与天体物理
Nature Physics Pub Date : 2024-08-13 DOI: 10.1038/s41567-024-02625-7
{"title":"Physics pushes peak performance","authors":"","doi":"10.1038/s41567-024-02625-7","DOIUrl":"10.1038/s41567-024-02625-7","url":null,"abstract":"In light of the recent Olympic and upcoming Paralympic Summer Games in Paris, we take a closer look at the physics of sports and how it helps athletes improve their performance.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 8","pages":"1219-1219"},"PeriodicalIF":17.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41567-024-02625-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信