Mi Lei, Rikuto Fukumori, Chun-Ju Wu, Edwin Barnes, Sophia E. Economou, Joonhee Choi, Andrei Faraon
{"title":"Quantum thermalization and Floquet engineering in a spin ensemble with a clock transition","authors":"Mi Lei, Rikuto Fukumori, Chun-Ju Wu, Edwin Barnes, Sophia E. Economou, Joonhee Choi, Andrei Faraon","doi":"10.1038/s41567-025-02943-4","DOIUrl":null,"url":null,"abstract":"<p>Platforms that enable the study and control of quantum many-body interactions are fundamentally important in quantum science and related emerging technologies. Optically addressable solid-state spins offer scalability to a large Hilbert space but suffer from large on-site disorder and undesired couplings to the environment. Here we investigated a strongly interacting ensemble of millions of optically addressable ytterbium-171 ions in a crystal. This platform features a clock transition that is first-order insensitive to magnetic fluctuations, thus exhibiting superior coherence and small disorder. Notably, the clock transition also gives rise to pure spin-exchange interactions, realizing the dipolar XY model, which is difficult to access in other solid-state spin systems. We exploited this feature to investigate quantum thermalization by varying the relative ratio of interaction strength to disorder, dynamically engineering the XY model into other many-body Hamiltonian models and realizing a time-crystalline phase of matter through periodic driving. Our results demonstrated that an ensemble of rare earth ions serves as a versatile test bed for many-body physics and developing quantum technologies.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"33 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02943-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Platforms that enable the study and control of quantum many-body interactions are fundamentally important in quantum science and related emerging technologies. Optically addressable solid-state spins offer scalability to a large Hilbert space but suffer from large on-site disorder and undesired couplings to the environment. Here we investigated a strongly interacting ensemble of millions of optically addressable ytterbium-171 ions in a crystal. This platform features a clock transition that is first-order insensitive to magnetic fluctuations, thus exhibiting superior coherence and small disorder. Notably, the clock transition also gives rise to pure spin-exchange interactions, realizing the dipolar XY model, which is difficult to access in other solid-state spin systems. We exploited this feature to investigate quantum thermalization by varying the relative ratio of interaction strength to disorder, dynamically engineering the XY model into other many-body Hamiltonian models and realizing a time-crystalline phase of matter through periodic driving. Our results demonstrated that an ensemble of rare earth ions serves as a versatile test bed for many-body physics and developing quantum technologies.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.