Nature PhysicsPub Date : 2025-03-20DOI: 10.1038/s41567-025-02837-5
Kenji Yasuda
{"title":"Twisted path to Landau levels","authors":"Kenji Yasuda","doi":"10.1038/s41567-025-02837-5","DOIUrl":"https://doi.org/10.1038/s41567-025-02837-5","url":null,"abstract":"Two studies reveal that twisted MoTe2 hosts multiple topological flat bands, mimicking Landau levels without a magnetic field. These topological correlated states may enable non-Abelian excitations and advances in quantum computation.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"61 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-20DOI: 10.1038/s41567-025-02803-1
Fan Xu, Xumin Chang, Jiayong Xiao, Yixin Zhang, Feng Liu, Zheng Sun, Ning Mao, Nikolai Peshcherenko, Jiayi Li, Kenji Watanabe, Takashi Taniguchi, Bingbing Tong, Li Lu, Jinfeng Jia, Dong Qian, Zhiwen Shi, Yang Zhang, Xiaoxue Liu, Shengwei Jiang, Tingxin Li
{"title":"Interplay between topology and correlations in the second moiré band of twisted bilayer MoTe2","authors":"Fan Xu, Xumin Chang, Jiayong Xiao, Yixin Zhang, Feng Liu, Zheng Sun, Ning Mao, Nikolai Peshcherenko, Jiayi Li, Kenji Watanabe, Takashi Taniguchi, Bingbing Tong, Li Lu, Jinfeng Jia, Dong Qian, Zhiwen Shi, Yang Zhang, Xiaoxue Liu, Shengwei Jiang, Tingxin Li","doi":"10.1038/s41567-025-02803-1","DOIUrl":"https://doi.org/10.1038/s41567-025-02803-1","url":null,"abstract":"<p>Topological flat bands formed in two-dimensional lattice systems offer an opportunity to study fractional phases of matter in the absence of an external magnetic field. Examples include fractional quantum anomalous Hall effects and fractional topological insulators. Recently, fractional quantum anomalous Hall effects have been experimentally realized in both twisted bilayer MoTe<sub>2</sub> and rhombohedral-stacked multilayer graphene on hexagonal boron nitride. These studies focus mainly on the first moiré flat band, but there is a possibility that non-Abelian states could occur in the second moiré band. Here we present a systematic transport study of twisted bilayer MoTe<sub>2</sub> devices, focusing on the second moiré band. We observe ferromagnetism in the second moiré band, and a Chern insulator state driven by out-of-plane magnetic fields at a filling factor of three holes per moiré unit cell. Between fillings of 2.2 and 2.7 holes per moiré unit cell, we observe a finite temperature resistivity minimum with a 1/<i>T</i> scaling law at low temperatures and a large out-of-plane negative magnetoresistance. Applying an out-of-plane electric field can induce quantum phase transitions at both integer and fractional filling factors. Our studies lay the groundwork for realizing tunable topological states and other unexpected magnetic phases beyond the first moiré flat band based in twisted MoTe<sub>2</sub>.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"55 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A metallic room-temperature d-wave altermagnet","authors":"Bei Jiang, Mingzhe Hu, Jianli Bai, Ziyin Song, Chao Mu, Gexing Qu, Wan Li, Wenliang Zhu, Hanqi Pi, Zhongxu Wei, Yu-Jie Sun, Yaobo Huang, Xiquan Zheng, Yingying Peng, Lunhua He, Shiliang Li, Jianlin Luo, Zheng Li, Genfu Chen, Hang Li, Hongming Weng, Tian Qian","doi":"10.1038/s41567-025-02822-y","DOIUrl":"https://doi.org/10.1038/s41567-025-02822-y","url":null,"abstract":"<p>Altermagnetism is a recently discovered unconventional magnetic phase that is characterized by time-reversal symmetry breaking and spin-split band structures in materials with zero net magnetization. Recently, spin-polarized band structures and a vanishing net magnetization were observed in semiconductors MnTe and MnTe<sub>2</sub>, confirming this unconventional magnetic order. Metallic altermagnets offer advantages for exploring physical phenomena related to low-energy quasiparticle excitations and for applications in spintronics because the finite electrical conductivity of metals allows direct manipulation of the spin current through the electric field. We demonstrate that KV<sub>2</sub>Se<sub>2</sub>O is a metallic room-temperature altermagnet with d-wave spin-momentum locking. Our experiments probe the magnetic and electronic structures of this compound and reveal a highly anisotropic spin-polarized Fermi surface and the emergence of a spin-density-wave order in the altermagnetic phase. These characteristics suggest that KV<sub>2</sub>Se<sub>2</sub>O could be a helpful platform for high-performance spintronic devices and for studying many-body effects coupled with unconventional magnetism.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"16 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143640382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-18DOI: 10.1038/s41567-025-02833-9
Michael C. Kolios
{"title":"Jet hammers and boring ultrasound","authors":"Michael C. Kolios","doi":"10.1038/s41567-025-02833-9","DOIUrl":"https://doi.org/10.1038/s41567-025-02833-9","url":null,"abstract":"Microbubbles exposed to ultrasound generate cyclic jets that create pores in cellular membranes and bore tunnels through cell junctions.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"18 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143640379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-17DOI: 10.1038/s41567-025-02813-z
Nishat Sultana, Robert W. Rienstra, Kenji Watanabe, Takashi Taniguchi, Joseph A. Stroscio, Nikolai B. Zhitenev, D. E. Feldman, Fereshte Ghahari
{"title":"Detection of fractional quantum Hall states by entropy-sensitive measurements","authors":"Nishat Sultana, Robert W. Rienstra, Kenji Watanabe, Takashi Taniguchi, Joseph A. Stroscio, Nikolai B. Zhitenev, D. E. Feldman, Fereshte Ghahari","doi":"10.1038/s41567-025-02813-z","DOIUrl":"https://doi.org/10.1038/s41567-025-02813-z","url":null,"abstract":"<p>The thermopower of a clean two-dimensional electron system is directly proportional to the entropy per charge carrier and can probe strongly interacting quantum phases such as fractional quantum Hall liquids. In particular, thermopower is a valuable parameter to probe the quasiparticle statistics that give rise to excess entropy in certain even-denominator fractional quantum Hall states. Here we demonstrate that the magneto-thermopower detection of fractional quantum Hall states is more sensitive than resistivity measurements. We do this in the context of Bernal-stacked bilayer graphene and highlight several even-denominator states at a relatively low magnetic field. These capabilities of thermopower measurements support the interest in fractional quantum Hall states for finding quasiparticles with non-Abelian statistics and elevate bilayer graphene as a promising platform for achieving this.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"24 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143635199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-14DOI: 10.1038/s41567-025-02791-2
Benjamin H. Andersen, Francisco M. R. Safara, Valeriia Grudtsyna, Oliver J. Meacock, Simon G. Andersen, William M. Durham, Nuno A. M. Araujo, Amin Doostmohammadi
{"title":"Evidence of universal conformal invariance in living biological matter","authors":"Benjamin H. Andersen, Francisco M. R. Safara, Valeriia Grudtsyna, Oliver J. Meacock, Simon G. Andersen, William M. Durham, Nuno A. M. Araujo, Amin Doostmohammadi","doi":"10.1038/s41567-025-02791-2","DOIUrl":"https://doi.org/10.1038/s41567-025-02791-2","url":null,"abstract":"<p>The emergent dynamics of collective cellular movement are typically thought to depend on how cells interact with one another and the mechanisms used to drive motility, both of which exhibit remarkable diversity across different biological systems. Here we report experimental evidence of a universal feature in the patterns of flow that spontaneously emerge in groups of collectively moving cells. Specifically, we demonstrate that the flows generated by collectively moving dog kidney cells, human breast cancer cells and two different strains of pathogenic bacteria exhibit robust conformal invariance. We also show that the precise form of invariance in all four systems is described by the Schramm–Loewner evolution—a family of planar curves defined by a single parameter—and belongs to the percolation universality class. The presence of universal conformal invariance reveals that the macroscopic features of living biological matter exhibit universal translational, rotational and scale symmetries that are independent of the microscopic properties of its constituents. Our results show that flow patterns generated by different systems are highly conserved and that biological systems can be used to experimentally test predictions from the theories for conformally invariant structures.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"8 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-14DOI: 10.1038/s41567-025-02832-w
Tongyang Li
{"title":"Quantum computers quickly find local minima","authors":"Tongyang Li","doi":"10.1038/s41567-025-02832-w","DOIUrl":"https://doi.org/10.1038/s41567-025-02832-w","url":null,"abstract":"Finding ground states of quantum many-body systems is difficult for both classical and quantum computers. However, their local minima can be efficiently found on a quantum computer using thermal perturbations, which is still hard classically.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"54 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-14DOI: 10.1038/s41567-025-02827-7
Tingting Wu, Matthew R. King, Yuanxin Qiu, Mina Farag, Rohit V. Pappu, Matthew D. Lew
{"title":"Single-fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates","authors":"Tingting Wu, Matthew R. King, Yuanxin Qiu, Mina Farag, Rohit V. Pappu, Matthew D. Lew","doi":"10.1038/s41567-025-02827-7","DOIUrl":"https://doi.org/10.1038/s41567-025-02827-7","url":null,"abstract":"<p>Biomolecular condensates are viscoelastic materials. Simulations predict that condensates formed by intrinsically disordered proteins are network fluids defined by spatially inhomogeneous organization of the underlying molecules. Here, we test these predictions and find that molecules within condensates are organized into slow-moving nanoscale clusters and fast-moving dispersed molecules. These results, obtained using single-fluorogen tracking and super-resolution imaging of different disordered protein-based condensates, affirm the predicted spatially inhomogeneous organization of molecules within condensates. We map the internal environments and interfaces of condensates using fluorogens that localize differently to the interiors versus interface between dilute phase and condensate. We show that nanoscale clusters within condensates are more hydrophobic than regions outside the clusters, and regions within condensates that lie outside clusters are more hydrophobic than coexisting dilute phases. Our findings provide a structural and dynamical basis for the viscoelasticity of condensates.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"68 1","pages":""},"PeriodicalIF":19.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhysicsPub Date : 2025-03-14DOI: 10.1038/s41567-025-02794-z
Richard J. C. Brown
{"title":"Never judge a book by its cover","authors":"Richard J. C. Brown","doi":"10.1038/s41567-025-02794-z","DOIUrl":"10.1038/s41567-025-02794-z","url":null,"abstract":"The SI brochure has described the global measurement system for more than 50 years, and yet it has kept a low profile. Richard Brown leafs through its history.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 3","pages":"487-487"},"PeriodicalIF":17.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}