{"title":"First-principles diagrammatic Monte Carlo for electron–phonon interactions and polaron","authors":"Yao Luo, Jinsoo Park, Marco Bernardi","doi":"10.1038/s41567-025-02954-1","DOIUrl":null,"url":null,"abstract":"<p>In condensed matter, phonons—quanta of the lattice vibration field—couple with electrons, leading to the formation of entangled electron–phonon states called polarons. In the intermediate- and strong-coupling regimes common to many conventional and quantum materials, a many-body treatment of polarons requires adding up a large number of electron–phonon Feynman diagrams. In this regard, diagrammatic Monte Carlo is an efficient method for diagram summation and has been used to study polarons within simplified electron–phonon models. Here we develop diagrammatic Monte Carlo calculations based on accurate first-principles electron–phonon interactions, enabling numerically exact results for the ground-state and dynamical properties of polarons in real materials. We implement these calculations in LiF, SrTiO<sub>3</sub>, and rutile and anatase TiO<sub>2</sub>, and describe both localized and delocalized polarons. Our work enables the precise modeling of electron–phonon interactions and polarons in coupling regimes ranging from weak to strong. The results will provide deeper insights into transport phenomena, linear response and superconductivity within the strong electron–phonon coupling regime.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"65 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02954-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In condensed matter, phonons—quanta of the lattice vibration field—couple with electrons, leading to the formation of entangled electron–phonon states called polarons. In the intermediate- and strong-coupling regimes common to many conventional and quantum materials, a many-body treatment of polarons requires adding up a large number of electron–phonon Feynman diagrams. In this regard, diagrammatic Monte Carlo is an efficient method for diagram summation and has been used to study polarons within simplified electron–phonon models. Here we develop diagrammatic Monte Carlo calculations based on accurate first-principles electron–phonon interactions, enabling numerically exact results for the ground-state and dynamical properties of polarons in real materials. We implement these calculations in LiF, SrTiO3, and rutile and anatase TiO2, and describe both localized and delocalized polarons. Our work enables the precise modeling of electron–phonon interactions and polarons in coupling regimes ranging from weak to strong. The results will provide deeper insights into transport phenomena, linear response and superconductivity within the strong electron–phonon coupling regime.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.