Florian Meier, Yuri Minoguchi, Simon Sundelin, Tony J. G. Apollaro, Paul Erker, Simone Gasparinetti, Marcus Huber
{"title":"精度不受热力学第二定律的限制","authors":"Florian Meier, Yuri Minoguchi, Simon Sundelin, Tony J. G. Apollaro, Paul Erker, Simone Gasparinetti, Marcus Huber","doi":"10.1038/s41567-025-02929-2","DOIUrl":null,"url":null,"abstract":"<p>Physical devices operating out of equilibrium are affected by thermal fluctuations, limiting their operational precision. This issue is particularly pronounced at microscopic and quantum scales, where its mitigation requires additional entropy dissipation. Understanding this constraint is important for both fundamental physics and technological design. Clocks, for example, need a thermodynamic flux towards equilibrium to measure time, resulting in a minimum entropy dissipation per clock tick. Although classical and quantum models often show a linear relationship between precision and dissipation, the ultimate bounds on this relationship remain unclear. Here we present an autonomous quantum many-body clock model that achieves clock precision that scales exponentially with entropy dissipation. This is enabled by coherent transport in a spin chain with tailored couplings, where dissipation is confined to a single link. The result demonstrates that coherent quantum dynamics can surpass the traditional thermodynamic precision limits, potentially guiding the development of future high-precision, low-dissipation quantum devices.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"47 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision is not limited by the second law of thermodynamics\",\"authors\":\"Florian Meier, Yuri Minoguchi, Simon Sundelin, Tony J. G. Apollaro, Paul Erker, Simone Gasparinetti, Marcus Huber\",\"doi\":\"10.1038/s41567-025-02929-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Physical devices operating out of equilibrium are affected by thermal fluctuations, limiting their operational precision. This issue is particularly pronounced at microscopic and quantum scales, where its mitigation requires additional entropy dissipation. Understanding this constraint is important for both fundamental physics and technological design. Clocks, for example, need a thermodynamic flux towards equilibrium to measure time, resulting in a minimum entropy dissipation per clock tick. Although classical and quantum models often show a linear relationship between precision and dissipation, the ultimate bounds on this relationship remain unclear. Here we present an autonomous quantum many-body clock model that achieves clock precision that scales exponentially with entropy dissipation. This is enabled by coherent transport in a spin chain with tailored couplings, where dissipation is confined to a single link. The result demonstrates that coherent quantum dynamics can surpass the traditional thermodynamic precision limits, potentially guiding the development of future high-precision, low-dissipation quantum devices.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02929-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02929-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Precision is not limited by the second law of thermodynamics
Physical devices operating out of equilibrium are affected by thermal fluctuations, limiting their operational precision. This issue is particularly pronounced at microscopic and quantum scales, where its mitigation requires additional entropy dissipation. Understanding this constraint is important for both fundamental physics and technological design. Clocks, for example, need a thermodynamic flux towards equilibrium to measure time, resulting in a minimum entropy dissipation per clock tick. Although classical and quantum models often show a linear relationship between precision and dissipation, the ultimate bounds on this relationship remain unclear. Here we present an autonomous quantum many-body clock model that achieves clock precision that scales exponentially with entropy dissipation. This is enabled by coherent transport in a spin chain with tailored couplings, where dissipation is confined to a single link. The result demonstrates that coherent quantum dynamics can surpass the traditional thermodynamic precision limits, potentially guiding the development of future high-precision, low-dissipation quantum devices.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.