Nature Reviews Genetics最新文献

筛选
英文 中文
Rethinking life through digital evolution 通过数字进化重新思考生命
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-31 DOI: 10.1038/s41576-025-00886-3
Chikara Furusawa
{"title":"Rethinking life through digital evolution","authors":"Chikara Furusawa","doi":"10.1038/s41576-025-00886-3","DOIUrl":"https://doi.org/10.1038/s41576-025-00886-3","url":null,"abstract":"In this Journal Club, Chikara Furusawa reflects on a 1991 publication by Tom Ray that presented Tierra, an evolvable computer program that pioneered the use of artificial life to study biological phenomena.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"112 1","pages":""},"PeriodicalIF":42.7,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144756631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating the genome and exposome for precision health in Kuwait. 整合基因组和暴露体以实现科威特的精确健康。
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-31 DOI: 10.1038/s41576-025-00883-6
Hamad Ali,Barrak Alahmad,Faisal H Al-Refaei,Ahmad Abou Tayoun,Hilal A Lashuel,Salman Al Sabah,Fahd Al-Mulla
{"title":"Integrating the genome and exposome for precision health in Kuwait.","authors":"Hamad Ali,Barrak Alahmad,Faisal H Al-Refaei,Ahmad Abou Tayoun,Hilal A Lashuel,Salman Al Sabah,Fahd Al-Mulla","doi":"10.1038/s41576-025-00883-6","DOIUrl":"https://doi.org/10.1038/s41576-025-00883-6","url":null,"abstract":"","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"96 1","pages":""},"PeriodicalIF":42.7,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144756180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods and applications of in vivo CRISPR screening 体内CRISPR筛选的方法及应用
IF 52 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-29 DOI: 10.1038/s41576-025-00873-8
Antonio J. Santinha, Alessio Strano, Randall J. Platt
{"title":"Methods and applications of in vivo CRISPR screening","authors":"Antonio J. Santinha, Alessio Strano, Randall J. Platt","doi":"10.1038/s41576-025-00873-8","DOIUrl":"10.1038/s41576-025-00873-8","url":null,"abstract":"A fundamental goal in genetics is to understand the connection between genotype and phenotype in health and disease. Genetic screens in which dozens to thousands of genetic elements are perturbed in a pooled fashion offer the opportunity to generate large-scale, information-rich and unbiased genotype–phenotype maps. Although typically applied in reductionist in vitro settings, methods enabling pooled CRISPR–Cas perturbation screening in vivo are gaining attention as they have the potential to accelerate the discovery and annotation of gene function across cells, tissues, developmental stages, disease states and species. In this Review, we discuss essential criteria for understanding, designing and implementing in vivo screening experiments, with a focus on pooled CRISPR-based screens in mice. We also highlight how the resulting datasets, combined with advances in multi-omics and artificial intelligence, will accelerate progress and enable fundamental discoveries across basic and translational sciences. In vivo CRISPR screens generate high-throughput, unbiased genotype–phenotypes maps for complex biological processes that cannot be studied in vitro. This Review outlines key criteria for understanding, designing and implementing such screens and discusses their potential impact on basic and translational research.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"26 10","pages":"702-718"},"PeriodicalIF":52.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144719695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards improved fine-mapping of candidate causal variants 改进候选因果变量的精细映射
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-28 DOI: 10.1038/s41576-025-00869-4
Zheng Li, Xiang Zhou
{"title":"Towards improved fine-mapping of candidate causal variants","authors":"Zheng Li, Xiang Zhou","doi":"10.1038/s41576-025-00869-4","DOIUrl":"https://doi.org/10.1038/s41576-025-00869-4","url":null,"abstract":"<p>Fine-mapping in genome-wide association studies aims to identify potentially causal genetic variants among a set of candidate variants that are often highly correlated with each other owing to linkage disequilibrium. A variety of statistical approaches are used in fine-mapping, almost all of which are based on a multiple regression framework to model the relationship between genotype and phenotype, while accommodating specific assumptions about the distribution of variant effect sizes and using different inference algorithms. Owing to their modelling flexibility and the ease of making inferential statements, these approaches are predominantly Bayesian in nature. Recently, these approaches have been improved by refining modelling assumptions, integrating additional information, accommodating summary statistics, and developing scalable computational algorithms that improve computation efficiency and fine-mapping resolution.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"4 1","pages":""},"PeriodicalIF":42.7,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144715315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding cell fate: human models reveal how SMAD2 variants shape development 解码细胞命运:人类模型揭示SMAD2变体如何影响发育
IF 52 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-25 DOI: 10.1038/s41576-025-00881-8
Samira Musah
{"title":"Decoding cell fate: human models reveal how SMAD2 variants shape development","authors":"Samira Musah","doi":"10.1038/s41576-025-00881-8","DOIUrl":"10.1038/s41576-025-00881-8","url":null,"abstract":"Samira Musah highlights a recent study by Ward et al., who generated isogenic human induced pluripotent stem cell lines to analyse the transcriptional and epigenetic effects of SMAD2 variants identified in patients with congenital heart disease.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"26 9","pages":"586-586"},"PeriodicalIF":52.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144701413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viromics approaches for the study of viral diversity and ecology in microbiomes 微生物组中病毒多样性和生态学研究的病毒组学方法
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-21 DOI: 10.1038/s41576-025-00871-w
Simon Roux, Clement Coclet
{"title":"Viromics approaches for the study of viral diversity and ecology in microbiomes","authors":"Simon Roux, Clement Coclet","doi":"10.1038/s41576-025-00871-w","DOIUrl":"https://doi.org/10.1038/s41576-025-00871-w","url":null,"abstract":"<p>Viruses are found across all ecosystems and infect every type of organism on Earth. Traditional culture-based methods have proven insufficient to explore this viral diversity at scale, driving the development of viromics, the sequence-based analysis of uncultivated viruses. Viromics approaches have been particularly useful for studying viruses of microorganisms, which can act as crucial regulators of microbiomes across ecosystems. They have already revealed the broad geographic distribution of viral communities and are progressively uncovering the expansive genetic and functional diversity of the global virome. Moving forward, large-scale viral ecogenomics studies combined with new experimental and computational approaches to identify virus activity and host interactions will enable a more complete characterization of global viral diversity and its effects.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"52 1","pages":""},"PeriodicalIF":42.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An evolutionary continuum between non-coding and coding DNA 非编码DNA和编码DNA之间的进化连续体
IF 52 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-21 DOI: 10.1038/s41576-025-00875-6
Josué Barrera-Redondo, Susana M. Coelho
{"title":"An evolutionary continuum between non-coding and coding DNA","authors":"Josué Barrera-Redondo,&nbsp;Susana M. Coelho","doi":"10.1038/s41576-025-00875-6","DOIUrl":"10.1038/s41576-025-00875-6","url":null,"abstract":"In this Journal Club, Josué Barrera-Redondo and Susana Coelho recount a 2012 paper by Carvunis et al. that provided a powerful framework for studying de novo gene evolution.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"26 9","pages":"584-584"},"PeriodicalIF":52.0,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexed assays of variant effect for clinical variant interpretation 临床变异解释中变异效应的多重分析
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-21 DOI: 10.1038/s41576-025-00870-x
Abbye E. McEwen, Malvika Tejura, Shawn Fayer, Lea M. Starita, Douglas M. Fowler
{"title":"Multiplexed assays of variant effect for clinical variant interpretation","authors":"Abbye E. McEwen, Malvika Tejura, Shawn Fayer, Lea M. Starita, Douglas M. Fowler","doi":"10.1038/s41576-025-00870-x","DOIUrl":"https://doi.org/10.1038/s41576-025-00870-x","url":null,"abstract":"<p>The rapid expansion of clinical genetic testing has markedly improved the detection of genetic variants. However, most variants lack the evidence needed to classify them as pathogenic or benign, resulting in the accumulation of variants of uncertain significance that cannot be used to diagnose or guide treatment of disease. Moreover, targeted therapy for cancer treatment increasingly depends on correctly identifying oncogenic driver mutations, but the oncogenicity of many variants identified in tumours remains unclear. To address these challenges, efforts to classify variants are increasingly using multiplexed assays of variant effect (MAVEs), which are massively scaled experiments that can generate functional data for thousands of variants simultaneously. The rise of MAVEs is accompanied by better guidance on the use of MAVE data for classifying germline variants to aid their clinical implementation. Here, we overview MAVE technologies from their inception to their increased use in the clinic, including their roles in uncovering mechanisms for variant pathogenicity and guiding targeted therapy and drug development.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"52 1","pages":""},"PeriodicalIF":42.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental evolution in an era of molecular manipulation 分子操纵时代的实验进化
IF 42.7 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-21 DOI: 10.1038/s41576-025-00867-6
Joao A. Ascensao, Michael M. Desai
{"title":"Experimental evolution in an era of molecular manipulation","authors":"Joao A. Ascensao, Michael M. Desai","doi":"10.1038/s41576-025-00867-6","DOIUrl":"https://doi.org/10.1038/s41576-025-00867-6","url":null,"abstract":"<p>Laboratory evolution experiments in microbial and viral populations have provided great insight into the dynamics and predictability of evolution. The rise of high-throughput sequencing technologies over the past two decades has driven a massive expansion in the scale and power of these experiments. However, until recently our abilities to connect genetic with phenotypic changes and analyse the molecular basis of adaptation have remained limited. Rapid technical advances to measure and manipulate both genotypes and phenotypes are now providing opportunities to investigate the genetic basis of phenotypic evolution and the forces that drive evolutionary dynamics. Here we review how these methodological advances are being used to predict and manipulate the course of laboratory evolution, analyse eco-evolutionary interactions, and how they are beginning to bridge the gap between laboratory and natural evolution.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"14 1","pages":""},"PeriodicalIF":42.7,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When cellular reprogramming meets AI: towards de novo cell design 当细胞重编程与人工智能相遇:走向全新的细胞设计
IF 52 1区 生物学
Nature Reviews Genetics Pub Date : 2025-07-16 DOI: 10.1038/s41576-025-00878-3
Jian Shu
{"title":"When cellular reprogramming meets AI: towards de novo cell design","authors":"Jian Shu","doi":"10.1038/s41576-025-00878-3","DOIUrl":"10.1038/s41576-025-00878-3","url":null,"abstract":"In this Journal Club, Jian Shu recalls a 2006 publication by Takahashi and Yamanaka as well as a 2021 paper introducing AlphaFold to discuss the fascinating potential of cellular reprogramming in the age of artificial intelligence.","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"26 9","pages":"585-585"},"PeriodicalIF":52.0,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144640359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信