Towards improved fine-mapping of candidate causal variants

IF 52 1区 生物学 Q1 GENETICS & HEREDITY
Zheng Li, Xiang Zhou
{"title":"Towards improved fine-mapping of candidate causal variants","authors":"Zheng Li, Xiang Zhou","doi":"10.1038/s41576-025-00869-4","DOIUrl":null,"url":null,"abstract":"<p>Fine-mapping in genome-wide association studies aims to identify potentially causal genetic variants among a set of candidate variants that are often highly correlated with each other owing to linkage disequilibrium. A variety of statistical approaches are used in fine-mapping, almost all of which are based on a multiple regression framework to model the relationship between genotype and phenotype, while accommodating specific assumptions about the distribution of variant effect sizes and using different inference algorithms. Owing to their modelling flexibility and the ease of making inferential statements, these approaches are predominantly Bayesian in nature. Recently, these approaches have been improved by refining modelling assumptions, integrating additional information, accommodating summary statistics, and developing scalable computational algorithms that improve computation efficiency and fine-mapping resolution.</p>","PeriodicalId":19067,"journal":{"name":"Nature Reviews Genetics","volume":"4 1","pages":""},"PeriodicalIF":52.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41576-025-00869-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Fine-mapping in genome-wide association studies aims to identify potentially causal genetic variants among a set of candidate variants that are often highly correlated with each other owing to linkage disequilibrium. A variety of statistical approaches are used in fine-mapping, almost all of which are based on a multiple regression framework to model the relationship between genotype and phenotype, while accommodating specific assumptions about the distribution of variant effect sizes and using different inference algorithms. Owing to their modelling flexibility and the ease of making inferential statements, these approaches are predominantly Bayesian in nature. Recently, these approaches have been improved by refining modelling assumptions, integrating additional information, accommodating summary statistics, and developing scalable computational algorithms that improve computation efficiency and fine-mapping resolution.

Abstract Image

改进候选因果变量的精细映射
在全基因组关联研究中,精细定位的目的是在一组候选变异中识别潜在的因果遗传变异,这些候选变异往往由于连锁不平衡而相互高度相关。精细制图中使用了各种统计方法,几乎所有这些方法都基于多元回归框架来模拟基因型和表型之间的关系,同时适应关于变异效应大小分布的特定假设,并使用不同的推理算法。由于它们的建模灵活性和易于进行推理陈述,这些方法本质上主要是贝叶斯方法。最近,这些方法通过改进建模假设、集成附加信息、容纳汇总统计和开发可扩展的计算算法来改进计算效率和精细映射分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Genetics
Nature Reviews Genetics 生物-遗传学
CiteScore
57.40
自引率
0.50%
发文量
113
审稿时长
6-12 weeks
期刊介绍: At Nature Reviews Genetics, our goal is to be the leading source of reviews and commentaries for the scientific communities we serve. We are dedicated to publishing authoritative articles that are easily accessible to our readers. We believe in enhancing our articles with clear and understandable figures, tables, and other display items. Our aim is to provide an unparalleled service to authors, referees, and readers, and we are committed to maximizing the usefulness and impact of each article we publish. Within our journal, we publish a range of content including Research Highlights, Comments, Reviews, and Perspectives that are relevant to geneticists and genomicists. With our broad scope, we ensure that the articles we publish reach the widest possible audience. As part of the Nature Reviews portfolio of journals, we strive to uphold the high standards and reputation associated with this esteemed collection of publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信