{"title":"The renaissance of oral tolerance: merging tradition and new insights","authors":"Vuk Cerovic, Oliver Pabst, Allan McI Mowat","doi":"10.1038/s41577-024-01077-7","DOIUrl":"10.1038/s41577-024-01077-7","url":null,"abstract":"Oral tolerance is the process by which feeding of soluble proteins induces antigen-specific systemic immune unresponsiveness. Oral tolerance is thought to have a central role in suppressing immune responses to ‘harmless’ food antigens, and its failure can lead to development of pathologies such as food allergies or coeliac disease. However, on the basis of long-standing experimental observations, the relevance of oral tolerance in human health has achieved new prominence recently following the discovery that oral administration of peanut proteins prevents the development of peanut allergy in at-risk human infants. In this Review, we summarize the new mechanistic insights into three key processes necessary for the induction of tolerance to oral antigens: antigen uptake and transport across the small intestinal epithelial barrier to the underlying immune cells; the processing, transport and presentation of fed antigen by different populations of antigen-presenting cells; and the development of immunosuppressive T cell populations that mediate antigen-specific tolerance. In addition, we consider how related but distinct processes maintain tolerance to bacterial antigens in the large intestine. Finally, we outline the molecular mechanisms and functional consequences of failure of oral tolerance and how these may be modulated to enhance clinical outcomes and prevent disease. Oral tolerance describes how the oral administration of harmless antigens (such as dietary proteins) leads to systemic immune unresponsiveness to these antigens. Its failure can lead to conditions such as food allergies. This Review from Cerovic, Pabst and Mowat explores new insights into the mechanisms of oral tolerance, discussing how ingested antigens enter and are processed in the intestine, the roles for unique antigen-presenting cells and the induction of immunosuppressive T cell populations. The authors also examine the maintenance of tolerance to bacterial antigens in the intestine, and they discuss the mechanisms behind the failure of oral tolerance and potential clinical interventions.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":"25 1","pages":"42-56"},"PeriodicalIF":67.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunological studies in trans-individuals undergoing gender affirming hormone therapy","authors":"Anna James, Petter Brodin","doi":"10.1038/s41577-024-01070-0","DOIUrl":"10.1038/s41577-024-01070-0","url":null,"abstract":"Personalized medicine for all requires a shift in science and clinical culture that puts more emphasis on the sources of inter-individual variation. Important examples are sex differences in the presentation and severity of diseases, as well as in responses to therapy. Understanding the mechanisms that drive these differences is important in the context of individualized healthcare, and also to better understand the immune sequelae of long-term sex hormone supplementation or inhibition in transgender individuals. Sex-specific differences in immunity are determined by genetics and by hormones. This Comment discusses first insights into the consequences of long-term sex-hormone supplementation on immunity in transgender individuals.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"697-698"},"PeriodicalIF":67.7,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengliang Wu, Erica L. Fletcher, Holly R. Chinnery, Laura E. Downie, Scott N. Mueller
{"title":"Redefining our vision: an updated guide to the ocular immune system","authors":"Mengliang Wu, Erica L. Fletcher, Holly R. Chinnery, Laura E. Downie, Scott N. Mueller","doi":"10.1038/s41577-024-01064-y","DOIUrl":"10.1038/s41577-024-01064-y","url":null,"abstract":"Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called ‘immune privilege’ of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system. This Review provides an overview of the immune system of the eye at steady state and in ocular disease, and it describes the links between ocular immunology and systemic disease. It highlights the intravital imaging techniques that have provided insights into immune cell morphology and dynamics in living human eyes.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":"24 12","pages":"896-911"},"PeriodicalIF":67.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combining spatial metabolomics and proteomics profiling of single cells","authors":"Mayar Allam, Ahmet F. Coskun","doi":"10.1038/s41577-024-01084-8","DOIUrl":"10.1038/s41577-024-01084-8","url":null,"abstract":"In this Tools of the Trade article, Mayar Allam and Ahmet Coskun describe how they combined spatial metabolomics and proteomics profiling — in a framework they call scSpaMet — to explore, at the single-cell level, how metabolic profiles vary by location and in disease.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"701-701"},"PeriodicalIF":67.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipid transfer from tumour-associated macrophages supports glioblastoma","authors":"Kirsty Minton","doi":"10.1038/s41577-024-01086-6","DOIUrl":"10.1038/s41577-024-01086-6","url":null,"abstract":"Kloosterman, Erbani et al. describe a lipid-mediated, metabolic crosstalk between tumour-associated macrophages and glioblastoma cells that supports tumour growth.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"700-700"},"PeriodicalIF":67.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organoids identify a role for IL-7 in coeliac disease","authors":"Yvonne Bordon","doi":"10.1038/s41577-024-01082-w","DOIUrl":"10.1038/s41577-024-01082-w","url":null,"abstract":"Organoids generated from individuals with coeliac disease identify a role for IL-7 in disease pathogenesis.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"699-699"},"PeriodicalIF":67.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy J. Wells, Tyron Esposito, Ian R. Henderson, Larisa I. Labzin
{"title":"Mechanisms of antibody-dependent enhancement of infectious disease","authors":"Timothy J. Wells, Tyron Esposito, Ian R. Henderson, Larisa I. Labzin","doi":"10.1038/s41577-024-01067-9","DOIUrl":"10.1038/s41577-024-01067-9","url":null,"abstract":"Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases. This Review discusses the different mechanisms of antibody-dependent enhancement (ADE) of infectious disease, including how antibodies can increase the pathogen load, protect bacteria from the immune system and amplify inflammation. The authors also highlight the role of autoantibodies and consider how a better understanding of ADE can be used to improve vaccines and treatments for infectious diseases.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":"25 1","pages":"6-21"},"PeriodicalIF":67.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141908901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-classical monocytes have the support of the whole vascular tree","authors":"Kirsty Minton","doi":"10.1038/s41577-024-01078-6","DOIUrl":"10.1038/s41577-024-01078-6","url":null,"abstract":"Thierry, Baudon et al. show that non-classical monocytes are nurtured by endothelial cell expression of CSF1 throughout the whole vascular tree.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"619-619"},"PeriodicalIF":67.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How neuroinflammation weakens muscles","authors":"Alexandra Flemming","doi":"10.1038/s41577-024-01074-w","DOIUrl":"10.1038/s41577-024-01074-w","url":null,"abstract":"Neuroinflammation in response to infection or chronic disease can cause non-neural symptoms such as fatigue and muscle pain. Yang et al. show that CNS-derived IL-6 directly regulates muscle physiology.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"619-619"},"PeriodicalIF":67.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early life antibiotics have lasting effects on the lung epithelium","authors":"Lucy Bird","doi":"10.1038/s41577-024-01072-y","DOIUrl":"10.1038/s41577-024-01072-y","url":null,"abstract":"Transient depletion of the gut microbiome by antibiotics in early life reduces systemic levels of the metabolite indole-3-propionic acid, which causes long-lasting mitochondrial damage to lung epithelial cells and increases susceptibility to airway inflammation in adult mice.","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":" ","pages":"620-620"},"PeriodicalIF":67.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}