Nanotechnology最新文献

筛选
英文 中文
Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications. 用 AlZn2O4 和 ZnP2 抑制氧化锌中的热导率以实现热电应用。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-25 DOI: 10.1088/1361-6528/ad9158
Cheng-Lun Hsin, Yu-Ting Liu, Yue-Yun Tsai
{"title":"Thermal conductivity suppression in ZnO with AlZn<sub>2</sub>O<sub>4</sub>and ZnP<sub>2</sub>for thermoelectric applications.","authors":"Cheng-Lun Hsin, Yu-Ting Liu, Yue-Yun Tsai","doi":"10.1088/1361-6528/ad9158","DOIUrl":"10.1088/1361-6528/ad9158","url":null,"abstract":"<p><p>In this study, intrinsic ZnO powder was sintered and intercalated with particles. The resulting powder, along with a commercial p-type product, was consolidated into bulk materials, and their thermal conductivity was measured across a temperature range of 350 K-700 K. The thermal conductivity of the commercial p-type ZnO was found to be lower than that of intrinsic ZnO, attributed to controlled doping. Notably, our demonstration illustrated that the thermal conductivity can be reduced by a factor of 5-10 in the presence of AlZn<sub>2</sub>O<sub>4</sub>and ZnP<sub>2</sub>precipitates. This methodology presents a feasible approach for the future design of ZnO-based thermoelectric materials, particularly for thermal heat scavenging applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Focus on Institute of Applied Physics at Seoul National University. 聚焦首尔国立大学应用物理研究所。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-25 DOI: 10.1088/1361-6528/ad4ebb
Takhee Lee, Kookrin Char, Gwan-Hyoung Lee
{"title":"Focus on Institute of Applied Physics at Seoul National University.","authors":"Takhee Lee, Kookrin Char, Gwan-Hyoung Lee","doi":"10.1088/1361-6528/ad4ebb","DOIUrl":"https://doi.org/10.1088/1361-6528/ad4ebb","url":null,"abstract":"","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics. 用于高分辨率光电子学的阵列式低理想度系数单垂直 InP 纳米线二极管。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-25 DOI: 10.1088/1361-6528/ad96c3
Nils Lamers, Kristi Adham, Lukas Hrachowina, Magnus T Borgström, Jesper Wallentin
{"title":"Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.","authors":"Nils Lamers, Kristi Adham, Lukas Hrachowina, Magnus T Borgström, Jesper Wallentin","doi":"10.1088/1361-6528/ad96c3","DOIUrl":"https://doi.org/10.1088/1361-6528/ad96c3","url":null,"abstract":"<p><p>Nanowire (NW) optoelectronic and electrical devices offer unique advantages over bulk materials but are generally made by contacting entire NW arrays in parallel. In contrast, ultra-high-resolution displays and photodetectors require electrical connections to individual NWs inside an array. Here, we demonstrate a scheme for fabricating such single NW vertical devices by contacting individual NWs within a dense NW array. We contrast benzocyclobutene and SiO2 planarization methods for these devices and find that the latter leads to dramatically improved processing yield as well as higher-quality diodes. Further, we find that replacing the metal top contact with transparent indium tin oxide does not decrease electrical performance, allowing for transparent top contacts. We improve the ideality factor of the devices from a previous n = 14 to n = 1.8, with the best devices as low as n = 1.5. The devices are characterized as both photodetectors with detectivities up to 2.45 AW<sup>-1</sup>and photocurrent densities of up to 185 mAcm<sup>-2</sup>under 0.76 suns illumination. Despite poor performance as light emitting diodes, the devices show great resilience to current densities up to 4×108 mAcm<sup>-2</sup>. In combination with growth optimization, the flexibility of the processing allows for use of these devices as ultra-high-resolution photodetectors and displays.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. 用静态和动态应变片操纵磁畴壁和天幕。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-25 DOI: 10.1088/1361-6528/ad96c2
Thomas A Moore
{"title":"Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles.","authors":"Thomas A Moore","doi":"10.1088/1361-6528/ad96c2","DOIUrl":"https://doi.org/10.1088/1361-6528/ad96c2","url":null,"abstract":"<p><p>Magnetic domain walls and skyrmions in thin film micro- and nanostructures have been of interest to a growing number of researchers since the turn of the millennium, motivated by the rich interplay of materials, interface and spin physics as well as by the potential for applications in data storage, sensing and computing. This review focuses on the manipulation of magnetic domain walls and skyrmions by piezoelectric strain, which has received increasing attention recently. Static strain profiles generated, for example, by voltage applied to a piezoelectric-ferromagnetic heterostructure, and dynamic strain profiles produced by surface acoustic waves, are reviewed here. As demonstrated by the success of magnetic random access memory, thin magnetic films have been successfully incorporated into CMOS back-end of line device fabrication. The purpose of this review is therefore not only to highlight promising piezoelectric and magnetic materials and their properties when combined, but also to galvanise interest in the spin textures in these heterostructures for a variety of spin- and straintronic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy. 开尔文探针力显微镜中金属尖端与半导体表面之间静电力的定量理论分析。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-22 DOI: 10.1088/1361-6528/ad960e
Nobuyuki Ishida, Takaaki Mano
{"title":"Quantitative theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy.","authors":"Nobuyuki Ishida, Takaaki Mano","doi":"10.1088/1361-6528/ad960e","DOIUrl":"https://doi.org/10.1088/1361-6528/ad960e","url":null,"abstract":"<p><p>Theoretical analysis of the electrostatic force between a metallic tip and semiconductor surface in Kelvin probe force microscopy (KPFM) measurements has been challenging due to the complexity introduced by tip-induced band bending (TIBB). In this study, we present a method for numerically computing the electrostatic forces in a fully three-dimensional (3D) configuration. Our calculations on a system composed of a metallic tip and GaAs(110) surface revealed deviations from parabolic behavior in the bias dependence of the electrostatic force, which is consistent with previously reported experimental results. In addition, we show that the tip radii estimated from curve fitting of the theory to experimental data provide reasonable values, consistent with the shapes of tip apex observed using scanning electron microscopy. The 3D simulation, which accounted for the influence of TIBB, enables a detailed analysis of the physics involved in KPFM measurements of semiconductor samples, thereby contributing to the development of more accurate measurement and analytical methods.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doping- and capacitor-less 1T-DRAM cell using reconfigurable feedback mechanism. 使用可重构反馈机制的无掺杂和无电容 1T-DRAM 单元。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-22 DOI: 10.1088/1361-6528/ad902c
Yuna Suh, Doohyeok Lim
{"title":"Doping- and capacitor-less 1T-DRAM cell using reconfigurable feedback mechanism.","authors":"Yuna Suh, Doohyeok Lim","doi":"10.1088/1361-6528/ad902c","DOIUrl":"10.1088/1361-6528/ad902c","url":null,"abstract":"<p><p>In this paper, we propose a doping- and capacitor-less 1T-DRAM cell, which achieved virtual doping by leveraging charge plasma and bias-induced electrostatic doping (bias-ED) techniques in a 5 nm-thick intrinsic silicon body, thereby eliminating doping processes. Platinum was in contact with the drain, while aluminum was in contact with the source, enabling virtual doping of the silicon body into a<i>p</i>*-<i>i-n</i>* configuration via the charge-plasma technique. Two coupled polarity gates and one control gate are positioned above the intrinsic channel region. The intrinsic channel region is virtually doped through the bias-ED by applying voltages to the gates, forming potential wells inside the channel. The voltage applied to the two coupled polarity gates determines whether the device operates in the<i>p</i>- or<i>n</i>-channel mode, whereas the control gate governs the flow of charge carriers. Charge carriers are stored and released in the potential wells inside the channel by adjusting the gate, effectively replacing the capacitor. In this device, the placement of polarity gates on either side of the control gate enables the observation of the reconfigurable characteristics. Moreover, the proposed device utilizes a feedback mechanism, enabling excellent memory characteristics such as a high on/off current ratio of ∼10<sup>9</sup>, steep switching behavior of ∼0.2<i>µ</i>V dec<sup>-1</sup>, short write time of 10 ns, long hold retention of over 100 s, and long read retention of over 600 s.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First principles electron transport in magnetoelectric SrRuO3/BaTiO3/SrTiO3/SrRuO3interfaces. 磁电式 SrRuO3/BaTiO3/SrTiO3/SrRuO3 界面中电子传输的第一原理。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-22 DOI: 10.1088/1361-6528/ad960f
Nicolae Filipoiu, Neculai Plugaru, Titus Sandu, Rodica Plugaru, George Alexandru Nemnes
{"title":"First principles electron transport in magnetoelectric SrRuO<sub>3</sub>/BaTiO<sub>3</sub>/SrTiO<sub>3</sub>/SrRuO<sub>3</sub>interfaces.","authors":"Nicolae Filipoiu, Neculai Plugaru, Titus Sandu, Rodica Plugaru, George Alexandru Nemnes","doi":"10.1088/1361-6528/ad960f","DOIUrl":"https://doi.org/10.1088/1361-6528/ad960f","url":null,"abstract":"<p><p>Recently, all-oxide ferroelectric tunnel junctions, with single or composite potential barriers based on SrRuO<sub>3</sub>/BaTiO<sub>3</sub>/SrTiO<sub>3</sub>(SRO/BTO/STO) perovskites, have drawn a particular interest for high density low power applications, due to their highly tunable transport properties and device scaling down possibility to atomic size. Here, using first principles calculations and the NEGFs formalism, we explore the electronic structure and tunneling transport properties in magnetoelectric SRO/BTO/<i>m</i>STO/SRO interfaces, (<i>m</i>= 0, 2, or 4 unit cells), considering both the RuO<sub>6</sub>octahedra tilts and magnetic SRO electrodes. Our main results may be summarized as follows: i) The band alignment schemes predict that polarization direction may determine both Schottky barrier or Ohmic contacts for<i>m</i>(STO)=0, but only Schottky contacts for<i>m</i>(STO)=2 and 4 junctions; ii) The tunnel electroresistance and tunnel magnetoresistance ratios are evaluated at 0 and 300 K; iii) The most magnetoelectric responsive interfaces are obtained for the<i>m</i>(STO)=2 heterostructure, this system also showing co-existent giant tunnel electroresistance and tunnel magnetoresistance effects; iv) The interfacial magnetoelectric coupling is not strong enough to control the tunnel magnetoresistance by polarization switching, in spite of significant SRO ferromagnetism.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive glass suspension hydrogel promotes wound healing by modulating fibroblasts. 生物活性玻璃悬浮水凝胶通过调节成纤维细胞促进伤口愈合。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-22 DOI: 10.1088/1361-6528/ad9610
Kai Ma, Baichuan Chen, Xiaodi Xu, Lei Zhang, Rui Ruan, Hongbin Deng, Xiaolei Zhu, Hongda Zhu
{"title":"Bioactive glass suspension hydrogel promotes wound healing by modulating fibroblasts.","authors":"Kai Ma, Baichuan Chen, Xiaodi Xu, Lei Zhang, Rui Ruan, Hongbin Deng, Xiaolei Zhu, Hongda Zhu","doi":"10.1088/1361-6528/ad9610","DOIUrl":"https://doi.org/10.1088/1361-6528/ad9610","url":null,"abstract":"<p><p>The irritation and adhesion of wound healing biomaterials to wet wounds should be addressed for achieving effective wound healing. In this study, a stable multifunctional hydrogels (BGs/HA suspension gels) were prepared using superfine powder of bioactive glasses (BGs), the biocompatible materials hyaluronic acid (HA) and carbomer940, which had good adhesion and low irritation properties for use in moist complex wounds. The average particle size of BGs/HA suspension gels was 13.11 ± 0.29 μm, and the bioactive glass content was 15.8 ± 0.2% (m/m). The results of cell proliferation, cell migration, and immunofluorescence staining experiments showed that in the initial stage of wound healing, the ionic extract of BGs formulations promoted the proliferation and migration of L929 cells and induced the secretion of α-SMA and collagen I. In the final stage of repair, the ionic extract of the BGs formulation regulated the differentiation of fibroblast, which contributed to the reduction of pathological scar formation. In vivo experiments showed that the wound healing rate of BGs/HA suspension gels group exceeded higher than that of the conventional BGs superfine powder group. Although BGs/HA suspension gels were comparable to its commercially available counterpart (Dermlin paste) in promoting wound healing, it addressed the problem of localized irritation caused by the high pH and low adhesion of BGs products. This study confirmed the specific regulatory effect of BGs/HA suspension gels on L929 cells, which provided a reference for the clinical application of BGs in wound dressing.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transport effects of twist-angle disorder in mesoscopic twisted bilayer graphene. 介观扭曲双层石墨烯中扭曲角无序的传输效应。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-22 DOI: 10.1088/1361-6528/ad90ea
Aleksander Sanjuan Ciepielewski, Jakub Tworzydło, Timo Hyart, Alexander Lau
{"title":"Transport effects of twist-angle disorder in mesoscopic twisted bilayer graphene.","authors":"Aleksander Sanjuan Ciepielewski, Jakub Tworzydło, Timo Hyart, Alexander Lau","doi":"10.1088/1361-6528/ad90ea","DOIUrl":"10.1088/1361-6528/ad90ea","url":null,"abstract":"<p><p>Magic-angle twisted bilayer graphene (TBG) is a tunable material with remarkably flat energy bands near the Fermi level, leading to fascinating transport properties and correlated states at low temperatures. However, grown pristine samples of this material tend to break up into landscapes of twist-angle domains, strongly influencing the physical properties of each individual sample. This poses a significant problem to the interpretation and comparison between measurements obtained from different samples. In this work, we study numerically the effects of twist-angle disorder on quantum electron transport in mesoscopic samples of magic-angle TBG. We find a significant property of twist-angle disorder that distinguishes it from onsite-energy disorder: it leads to an asymmetric broadening of the energy-resolved conductance. The magnitude of the twist-angle variation has a strong effect on conductance, while the number of twist-angle domains is of much lesser significance. We further establish a relationship between the asymmetric broadening and the asymmetric density of states of TBG at angles smaller than the first magic angle. Our results show that the qualitative differences between the types of disorder in the energy-resolved conductance of TBG samples can be used to characterize them at temperatures above the critical temperatures of the correlated phases, enabling systematic experimental studies of the effects of the different types of disorders also on the other properties such as the competition of the different types of correlated states appearing at lower temperatures.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shallow defects and optical properties of CsPbBr3thin films through noble gas ion beam defect engineering. 通过惰性气体离子束缺陷工程实现 CsPbBr3thin 薄膜的浅缺陷和光学特性。
IF 2.9 4区 材料科学
Nanotechnology Pub Date : 2024-11-21 DOI: 10.1088/1361-6528/ad91bd
Holger Fiedler, Jake Hardy, Jonathan E Halpert, Nathaniel J L K Davis, John Kennedy
{"title":"Shallow defects and optical properties of CsPbBr<sub>3</sub>thin films through noble gas ion beam defect engineering.","authors":"Holger Fiedler, Jake Hardy, Jonathan E Halpert, Nathaniel J L K Davis, John Kennedy","doi":"10.1088/1361-6528/ad91bd","DOIUrl":"https://doi.org/10.1088/1361-6528/ad91bd","url":null,"abstract":"<p><p>Ion implantation is widely utilised for the modification of inorganic semiconductors; however, the technique has not been extensively applied to lead halide perovskites. In this report, we demonstrate the modification of the optical properties of caesium lead bromide (CsPbBr<sub>3</sub>) thin films via noble gas ion implantation. We observed that the photoluminescence (PL) lifetimes of CsPbBr<sub>3</sub>thin films can be doubled by low fluences (<1 × 10<sup>14</sup>at·cm<sup>-2</sup>) of ion implantation with an acceleration voltage of 20 keV. We attribute this phenomenon to ion beam induced shallow minority charge carrier trapping induced by nuclear stopping, dominant by heavy noble gases (Ar, Xe). Simultaneously, the PL quantum yield (PLQY) is altered during noble gas ion implantation inversely correlates with the electronic stopping power of the implanted element, hence Ar implantation reduces the PLQY, while Ne even causes a PLQY enhancement. These results thus provide a guide to separate the effect of nuclear and electronic damage during ion implantation into halide perovskites.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信