几何不对称bc3单层热二极管的分子动力学研究。

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Farrokh Yousefi, Omid Farzadian, Mehdi Shafiee
{"title":"几何不对称bc3单层热二极管的分子动力学研究。","authors":"Farrokh Yousefi, Omid Farzadian, Mehdi Shafiee","doi":"10.1088/1361-6528/ae0cd2","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we employ non-equilibrium molecular dynamics simulations to investigate the unique thermal transport properties of an asymmetricBC3monolayer. We demonstrate the existence of<i>infinite thermal rectification</i>, wherein heat flows preferentially in one direction with complete suppression in the reverse, mimicking the behavior of an electrical diode. This phenomenon is attributed to the<i>negative thermal conductivity</i>that arises below a critical temperature difference, referred to as the transition point, where the heat counterintuitively flows from the cold reservoir to the hot one. Furthermore, the system exhibits a spontaneous heat current, allowing persistent heat flow even in the absence of an applied temperature gradient. These remarkable behaviors suggest promising applications in passive cooling, fuel-free refrigeration, and thermal logic devices. We further analyze the impact of geometric and thermal parameters, including length, width, and temperature, on the system's heat conduction and rectification performance. To explain the underlying mechanisms, we propose an analytical model based solely on geometric asymmetry, which shows excellent agreement with our simulation results. Overall, our findings establish theBC3monolayer as a promising platform for efficient nanoscale thermal control.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically asymmetricBC3monolayer as a thermal diode: a molecular dynamics study.\",\"authors\":\"Farrokh Yousefi, Omid Farzadian, Mehdi Shafiee\",\"doi\":\"10.1088/1361-6528/ae0cd2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we employ non-equilibrium molecular dynamics simulations to investigate the unique thermal transport properties of an asymmetricBC3monolayer. We demonstrate the existence of<i>infinite thermal rectification</i>, wherein heat flows preferentially in one direction with complete suppression in the reverse, mimicking the behavior of an electrical diode. This phenomenon is attributed to the<i>negative thermal conductivity</i>that arises below a critical temperature difference, referred to as the transition point, where the heat counterintuitively flows from the cold reservoir to the hot one. Furthermore, the system exhibits a spontaneous heat current, allowing persistent heat flow even in the absence of an applied temperature gradient. These remarkable behaviors suggest promising applications in passive cooling, fuel-free refrigeration, and thermal logic devices. We further analyze the impact of geometric and thermal parameters, including length, width, and temperature, on the system's heat conduction and rectification performance. To explain the underlying mechanisms, we propose an analytical model based solely on geometric asymmetry, which shows excellent agreement with our simulation results. Overall, our findings establish theBC3monolayer as a promising platform for efficient nanoscale thermal control.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ae0cd2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ae0cd2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们采用非平衡分子动力学(NEMD)模拟来研究不对称bc3单层独特的热传输性质。我们证明了无限热整流的存在,其中热量在一个方向上优先流动,而在相反方向上完全抑制,模拟了一个电二极管的行为。这种现象归因于在临界温差以下出现的负导热系数,称为过渡点,在这里,热量反直觉地从冷热源流向热热源。此外,该系统表现出自发热流(SHC),即使在没有施加温度梯度的情况下也允许持续的热流。这些显著的行为表明在被动冷却、无燃料制冷和热逻辑器件中有前景的应用。我们进一步分析了几何和热参数(包括长度、宽度和温度)对系统导热和整流性能的影响。为了解释潜在的机制,我们提出了一个仅基于几何不对称的分析模型,该模型与我们的模拟结果非常吻合。总的来说,我们的研究结果表明,BC - 3单层膜是一种很有前途的高效纳米级热控制平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometrically asymmetricBC3monolayer as a thermal diode: a molecular dynamics study.

In this study, we employ non-equilibrium molecular dynamics simulations to investigate the unique thermal transport properties of an asymmetricBC3monolayer. We demonstrate the existence ofinfinite thermal rectification, wherein heat flows preferentially in one direction with complete suppression in the reverse, mimicking the behavior of an electrical diode. This phenomenon is attributed to thenegative thermal conductivitythat arises below a critical temperature difference, referred to as the transition point, where the heat counterintuitively flows from the cold reservoir to the hot one. Furthermore, the system exhibits a spontaneous heat current, allowing persistent heat flow even in the absence of an applied temperature gradient. These remarkable behaviors suggest promising applications in passive cooling, fuel-free refrigeration, and thermal logic devices. We further analyze the impact of geometric and thermal parameters, including length, width, and temperature, on the system's heat conduction and rectification performance. To explain the underlying mechanisms, we propose an analytical model based solely on geometric asymmetry, which shows excellent agreement with our simulation results. Overall, our findings establish theBC3monolayer as a promising platform for efficient nanoscale thermal control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信