Molecular PlantPub Date : 2025-03-03Epub Date: 2025-01-19DOI: 10.1016/j.molp.2025.01.015
Julie L McDonald, Robert H Wilson
{"title":"New molecular chaperone roles for CO<sub>2</sub> assimilation in early land plants.","authors":"Julie L McDonald, Robert H Wilson","doi":"10.1016/j.molp.2025.01.015","DOIUrl":"10.1016/j.molp.2025.01.015","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"386-388"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-03Epub Date: 2025-01-03DOI: 10.1016/j.molp.2025.01.001
Wen-Hao Han, Shun-Xia Ji, Feng-Bin Zhang, Hong-Da Song, Jun-Xia Wang, Xiao-Ping Fan, Rui Xie, Shu-Sheng Liu, Xiao-Wei Wang
{"title":"A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.","authors":"Wen-Hao Han, Shun-Xia Ji, Feng-Bin Zhang, Hong-Da Song, Jun-Xia Wang, Xiao-Ping Fan, Rui Xie, Shu-Sheng Liu, Xiao-Wei Wang","doi":"10.1016/j.molp.2025.01.001","DOIUrl":"10.1016/j.molp.2025.01.001","url":null,"abstract":"<p><p>Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects can function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of the phloem-feeding whitefly (Bemisia tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum) plants. We show that the salivary gland-enriched BtmiR29-b is produced by BtDicer 1 and released into tobacco cells via salivary exosomes. Once inside the plant cells, BtmiR29-b hijacks tobacco Argonaute 1 to silence the defense gene Bcl-2-associated athanogene 4 (NtBAG4). In tobacco, NtBAG4 acts as the positive regulator of phytohormones salicylic acid (SA) and jasmonic acid (JA), enhancing plant defense against whitefly attacks. Interestingly, we also found that miR29-b acts as a salivary effector in another Hemipteran insect, the aphid Myzus persicae, which inhibits tobacco resistance by degrading NtBAG4. Moreover, miR29-b is highly conserved in Hemiptera and across other insect orders such as Coleoptera, Hymenoptera, Orthoptera, and Blattaria. Computational analysis suggests that miR29-b may also target the evolutionarily conserved BAG4 gene in other plant species. We further provide evidence showing BtmiR29-b-mediated BAG4 cleavage and defense suppression in tomato (Solanum lycopersicum). Taken together, our work reveals that a conserved miR29-b effector from insects fine-tunes plant SA- and JA-mediated defense by cross-kingdom silencing of the host plant BAG4 gene, providing new insight into the defense and counter-defense mechanisms between herbivores and their host plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"437-456"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-03Epub Date: 2025-01-24DOI: 10.1016/j.molp.2025.01.018
Xiaohua Dong, Xu Lu, Hai Zhu, Zhengxue Zhu, Peiyun Ji, Xianglan Li, Tianli Li, Xiong Zhang, Gan Ai, Daolong Dou
{"title":"A typical NLR recognizes a family of structurally conserved effectors to confer plant resistance against adapted and non-adapted Phytophthora pathogens.","authors":"Xiaohua Dong, Xu Lu, Hai Zhu, Zhengxue Zhu, Peiyun Ji, Xianglan Li, Tianli Li, Xiong Zhang, Gan Ai, Daolong Dou","doi":"10.1016/j.molp.2025.01.018","DOIUrl":"10.1016/j.molp.2025.01.018","url":null,"abstract":"<p><p>Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the underlying molecular mechanisms remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of Nicotiana benthamiana (Nb), as a model and identified an RXLR effector that determines Nb incompatibility to Ps. Knockout of this RXLR effector in Ps enables successful infection of Nb, leading us to name it AvrNb (Avirulence gene in Nb). A systematic screening of Nb NLR genes further revealed that NbPrf, previously reported to be a receptor of bacterial avirulence proteins, is the NLR protein responsible for mediating AvrNb recognition and initiating the hypersensitive response (HR). Mutation in NbPrf makes Nb completely compatible to Ps. We found that AvrNb is structurally conserved among multiple Phytophthora pathogens, and its homologs also induce NbPrf-dependent HR. Remarkably, further inoculation assay showed that NbPrf is also involved in plant immunity to two adapted Phytophthora pathogens, Phytophthora infestans and Phytophthora capsici. Our findings suggest that NbPrf represents a promising resource for breeding resistance to Phytophthora pathogens and implicate that the conserved effectors present in both adapted and non-adapted pathogens may provide sufficient selective pressure to maintain the remarkably durable incompatibility between plants and non-adapted pathogens.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"485-500"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-03Epub Date: 2025-01-16DOI: 10.1016/j.molp.2025.01.013
Judy A Brusslan
{"title":"Getting the SCOOP on peptide ligands that regulate leaf senescence.","authors":"Judy A Brusslan","doi":"10.1016/j.molp.2025.01.013","DOIUrl":"10.1016/j.molp.2025.01.013","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"384-385"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-03Epub Date: 2025-01-19DOI: 10.1016/j.molp.2025.01.014
Seol Ki Paeng, Seong Dong Wi, Ho Byoung Chae, Su Bin Bae, Kieu Anh Thi Phan, Min Gab Kim, Dae-Jin Yun, Woe-Yeon Kim, C Robertson McClung, Sang Yeol Lee
{"title":"NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells.","authors":"Seol Ki Paeng, Seong Dong Wi, Ho Byoung Chae, Su Bin Bae, Kieu Anh Thi Phan, Min Gab Kim, Dae-Jin Yun, Woe-Yeon Kim, C Robertson McClung, Sang Yeol Lee","doi":"10.1016/j.molp.2025.01.014","DOIUrl":"10.1016/j.molp.2025.01.014","url":null,"abstract":"<p><p>The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. In this study, we reveal that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose. In NTRC-deficient ntrc mutants, the perturbed temporal dynamics of cytosolic metabolite pools substantially attenuate the amplitude of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) mRNA oscillation while maintaining its inherent periodicity. In contrast, these fluctuations extend the period and greatly reduced the amplitude of GIGANTEA (GI). In alignment with its regulatory role, the chloroplast redox rhythm and TTFL-driven nuclear oscillators are severely disrupted in ntrc plants. The impairements are rescued by NTRC expression but not by the expression of catalytically inactive NTRC(C/S) mutant, indicating that NTRC's redox activity is essential for synchronizing intracellular circadian rhythms. In return, the canonical nuclear clock component, TIMING OF CAB EXPRESSION 1 (TOC1), regulates the diel chloroplast redox rhythm by controlling NTRC expression, as evidenced by the redox cycle of chloroplast 2-Cys peroxiredoxins. This reciprocal regulation suggests a tight coupling between chloroplast redox rhythms and nuclear oscillators. Collectively, our study has identified NTRC as a key circadian modulator, elucidating the intricate connection between the metabolite-dependent chloroplast redox rhythm and the temporal dynamics of nuclear canonical clocks.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"468-484"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2024-12-31DOI: 10.1016/j.molp.2024.12.017
Natsumi Maruta, Mitchell Sorbello, Bostjan Kobe
{"title":"TIR-mediated immune signaling through the EDS1:PAD4:ADR1 node is conserved in monocots and dicots.","authors":"Natsumi Maruta, Mitchell Sorbello, Bostjan Kobe","doi":"10.1016/j.molp.2024.12.017","DOIUrl":"https://doi.org/10.1016/j.molp.2024.12.017","url":null,"abstract":"<p><p>Plants defend themselves against pathogens by activating two interconnected layers of immunity: pattern- and effector-triggered immunity. Recent studies shed light on a number of unanswered questions in these pathways and demonstrate a conserved structural basis, in monocots and dicots, of signaling through the EDS1:PAD4:ADR1 module, downstream of Toll/interleukin-1 receptor (TIR) domain-containing immune receptors that cleave the dinucleotide nicotinamide adenine dinucleotide (NAD<sup>+</sup>). The studies define a new function for TIR domain proteins in monocots and suggest that the signaling molecule 5″-phosphoribosyl (pRib)-AMP is derived from the TIR product 2'-adenosine diphosphate ribose (2'cADPR). These findings have important implications for developing the strategies to breed resistant crops.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"18 2","pages":"192-194"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144151304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2024-12-17DOI: 10.1016/j.molp.2024.12.009
Congcong Jiang, Jinhong Kan, Guangqi Gao, Christoph Dockter, Chengdao Li, Wenxue Wu, Ping Yang, Nils Stein
{"title":"Barley2035: A decadal vision for barley research and breeding.","authors":"Congcong Jiang, Jinhong Kan, Guangqi Gao, Christoph Dockter, Chengdao Li, Wenxue Wu, Ping Yang, Nils Stein","doi":"10.1016/j.molp.2024.12.009","DOIUrl":"10.1016/j.molp.2024.12.009","url":null,"abstract":"<p><p>Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"195-218"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2024-12-30DOI: 10.1016/j.molp.2024.12.015
Qinyi Ye, Chuanen Zhou, Hao Lin, Dong Luo, Divya Jain, Maofeng Chai, Zhichao Lu, Zhipeng Liu, Sonali Roy, Jiangli Dong, Zeng-Yu Wang, Tao Wang
{"title":"Medicago2035: Genomes, functional genomics, and molecular breeding.","authors":"Qinyi Ye, Chuanen Zhou, Hao Lin, Dong Luo, Divya Jain, Maofeng Chai, Zhichao Lu, Zhipeng Liu, Sonali Roy, Jiangli Dong, Zeng-Yu Wang, Tao Wang","doi":"10.1016/j.molp.2024.12.015","DOIUrl":"10.1016/j.molp.2024.12.015","url":null,"abstract":"<p><p>Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"219-244"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}