{"title":"对现代栽培品种的大规模基因组和表型组分析有助于未来的水稻育种设计。","authors":"Xiaoding Ma, Hao Wang, Shen Yan, Chuanqing Zhou, Kunneng Zhou, Qiang Zhang, Maomao Li, Yaolong Yang, Danting Li, Peng Song, Cuifeng Tang, Leiyue Geng, Jianchang Sun, Zhiyuan Ji, Xianjun Sun, Yongli Zhou, Peng Zhou, Di Cui, Bing Han, Xin Jing, Qiang He, Wei Fang, Longzhi Han","doi":"10.1016/j.molp.2025.03.007","DOIUrl":null,"url":null,"abstract":"<p><p>Modern cultivated rice plays a pivotal role in global food security. China accounts for nearly 30% of the world's rice production and has developed numerous cultivated varieties over the past decades that are well adapted to diverse growing regions. However, the genomic bases underlying the phenotypes of these modern cultivars remain poorly characterized, limiting the exploitation of this vast resource for breeding specialized, regionally adapted cultivars. In this study, we constructed a comprehensive genetic variation map of modern rice using resequencing datasets from 6044 representative cultivars from five major rice-growing regions in China. Our genomic and phenotypic analyses of this diversity panel revealed regional preferences for specific genomic backgrounds and traits, such as heading date, biotic/abiotic stress resistance, and grain shape, which are crucial for adaptation to local conditions and consumer preferences. We identified 3131 quantitative trait loci associated with 53 phenotypes across 212 datasets under various environmental conditions through genome-wide association studies. Notably, we cloned and functionally verified a novel gene related to grain length, OsGL3.6. By integrating multiple datasets, we developed RiceAtlas, a versatile multi-scale toolkit for rice breeding design. We successfully utilized the RiceAtlas breeding design function to rapidly improve the grain shape of the Suigeng4 cultivar. These valuable resources enhance our understanding of the adaptability and breeding requirements of modern rice and can facilitate advances in future rice-breeding initiatives.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"651-668"},"PeriodicalIF":17.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale genomic and phenomic analyses of modern cultivars empower future rice breeding design.\",\"authors\":\"Xiaoding Ma, Hao Wang, Shen Yan, Chuanqing Zhou, Kunneng Zhou, Qiang Zhang, Maomao Li, Yaolong Yang, Danting Li, Peng Song, Cuifeng Tang, Leiyue Geng, Jianchang Sun, Zhiyuan Ji, Xianjun Sun, Yongli Zhou, Peng Zhou, Di Cui, Bing Han, Xin Jing, Qiang He, Wei Fang, Longzhi Han\",\"doi\":\"10.1016/j.molp.2025.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern cultivated rice plays a pivotal role in global food security. China accounts for nearly 30% of the world's rice production and has developed numerous cultivated varieties over the past decades that are well adapted to diverse growing regions. However, the genomic bases underlying the phenotypes of these modern cultivars remain poorly characterized, limiting the exploitation of this vast resource for breeding specialized, regionally adapted cultivars. In this study, we constructed a comprehensive genetic variation map of modern rice using resequencing datasets from 6044 representative cultivars from five major rice-growing regions in China. Our genomic and phenotypic analyses of this diversity panel revealed regional preferences for specific genomic backgrounds and traits, such as heading date, biotic/abiotic stress resistance, and grain shape, which are crucial for adaptation to local conditions and consumer preferences. We identified 3131 quantitative trait loci associated with 53 phenotypes across 212 datasets under various environmental conditions through genome-wide association studies. Notably, we cloned and functionally verified a novel gene related to grain length, OsGL3.6. By integrating multiple datasets, we developed RiceAtlas, a versatile multi-scale toolkit for rice breeding design. We successfully utilized the RiceAtlas breeding design function to rapidly improve the grain shape of the Suigeng4 cultivar. These valuable resources enhance our understanding of the adaptability and breeding requirements of modern rice and can facilitate advances in future rice-breeding initiatives.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"651-668\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.03.007\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.03.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Large-scale genomic and phenomic analyses of modern cultivars empower future rice breeding design.
Modern cultivated rice plays a pivotal role in global food security. China accounts for nearly 30% of the world's rice production and has developed numerous cultivated varieties over the past decades that are well adapted to diverse growing regions. However, the genomic bases underlying the phenotypes of these modern cultivars remain poorly characterized, limiting the exploitation of this vast resource for breeding specialized, regionally adapted cultivars. In this study, we constructed a comprehensive genetic variation map of modern rice using resequencing datasets from 6044 representative cultivars from five major rice-growing regions in China. Our genomic and phenotypic analyses of this diversity panel revealed regional preferences for specific genomic backgrounds and traits, such as heading date, biotic/abiotic stress resistance, and grain shape, which are crucial for adaptation to local conditions and consumer preferences. We identified 3131 quantitative trait loci associated with 53 phenotypes across 212 datasets under various environmental conditions through genome-wide association studies. Notably, we cloned and functionally verified a novel gene related to grain length, OsGL3.6. By integrating multiple datasets, we developed RiceAtlas, a versatile multi-scale toolkit for rice breeding design. We successfully utilized the RiceAtlas breeding design function to rapidly improve the grain shape of the Suigeng4 cultivar. These valuable resources enhance our understanding of the adaptability and breeding requirements of modern rice and can facilitate advances in future rice-breeding initiatives.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.