Qun Lian, Yingying Zhang, Jinzhe Zhang, Zhen Peng, Weilun Wang, Miru Du, Hongbo Li, Xinyan Zhang, Lin Cheng, Ran Du, Zijian Zhou, Zhenqiang Yang, Guohui Xin, Yuanyuan Pu, Zhiwen Feng, Qian Wu, Guochao Xuanyuan, Shunbuer Bai, Rong Hu, Sónia Negrão, Glenn J Bryan, Christian W B Bachem, Yongfeng Zhou, Ruofang Zhang, Yi Shang, Sanwen Huang, Tao Lin, Jianjian Qi
{"title":"基因组变异图提供了对马铃薯进化和关键农艺性状的深入了解。","authors":"Qun Lian, Yingying Zhang, Jinzhe Zhang, Zhen Peng, Weilun Wang, Miru Du, Hongbo Li, Xinyan Zhang, Lin Cheng, Ran Du, Zijian Zhou, Zhenqiang Yang, Guohui Xin, Yuanyuan Pu, Zhiwen Feng, Qian Wu, Guochao Xuanyuan, Shunbuer Bai, Rong Hu, Sónia Negrão, Glenn J Bryan, Christian W B Bachem, Yongfeng Zhou, Ruofang Zhang, Yi Shang, Sanwen Huang, Tao Lin, Jianjian Qi","doi":"10.1016/j.molp.2025.01.016","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period. Genome-wide association studies revealed a UDP-glycosyltransferase gene for biosynthesis of antinutritional steroidal glycoalkaloids (SGAs), and a Dehydration Responsive Element Binding (DREB) transcription factor conferring increased average tuber weight. In addition, genome similarity and group-specific SNP analyses indicated tetraploid potatoes originated from the diploid S. tuberosum group Stenotomum. These findings shed light on the evolutionary trajectory of potato domestication and improvement, providing a solid foundation for advancing hybrid potato breeding practices.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A genomic variation map provides insights into potato evolution and key agronomic traits.\",\"authors\":\"Qun Lian, Yingying Zhang, Jinzhe Zhang, Zhen Peng, Weilun Wang, Miru Du, Hongbo Li, Xinyan Zhang, Lin Cheng, Ran Du, Zijian Zhou, Zhenqiang Yang, Guohui Xin, Yuanyuan Pu, Zhiwen Feng, Qian Wu, Guochao Xuanyuan, Shunbuer Bai, Rong Hu, Sónia Negrão, Glenn J Bryan, Christian W B Bachem, Yongfeng Zhou, Ruofang Zhang, Yi Shang, Sanwen Huang, Tao Lin, Jianjian Qi\",\"doi\":\"10.1016/j.molp.2025.01.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period. Genome-wide association studies revealed a UDP-glycosyltransferase gene for biosynthesis of antinutritional steroidal glycoalkaloids (SGAs), and a Dehydration Responsive Element Binding (DREB) transcription factor conferring increased average tuber weight. In addition, genome similarity and group-specific SNP analyses indicated tetraploid potatoes originated from the diploid S. tuberosum group Stenotomum. These findings shed light on the evolutionary trajectory of potato domestication and improvement, providing a solid foundation for advancing hybrid potato breeding practices.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.01.016\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.01.016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A genomic variation map provides insights into potato evolution and key agronomic traits.
Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period. Genome-wide association studies revealed a UDP-glycosyltransferase gene for biosynthesis of antinutritional steroidal glycoalkaloids (SGAs), and a Dehydration Responsive Element Binding (DREB) transcription factor conferring increased average tuber weight. In addition, genome similarity and group-specific SNP analyses indicated tetraploid potatoes originated from the diploid S. tuberosum group Stenotomum. These findings shed light on the evolutionary trajectory of potato domestication and improvement, providing a solid foundation for advancing hybrid potato breeding practices.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.