Nature Cell Biology最新文献

筛选
英文 中文
SERRATE drives phase separation behaviours to regulate m6A modification and miRNA biogenesis SERRATE 驱动相分离行为以调控 m6A 修饰和 miRNA 生物发生
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-29 DOI: 10.1038/s41556-024-01530-8
Songxiao Zhong, Xindi Li, Changhao Li, Haiyan Bai, Jingjing Chen, Lu Gan, Jiyun Zhu, Taerin Oh, Xingxing Yan, Jiaying Zhu, Niankui Li, Hisashi Koiwa, Thomas Meek, Xu Peng, Bin Yu, Zhonghui Zhang, Xiuren Zhang
{"title":"SERRATE drives phase separation behaviours to regulate m6A modification and miRNA biogenesis","authors":"Songxiao Zhong, Xindi Li, Changhao Li, Haiyan Bai, Jingjing Chen, Lu Gan, Jiyun Zhu, Taerin Oh, Xingxing Yan, Jiaying Zhu, Niankui Li, Hisashi Koiwa, Thomas Meek, Xu Peng, Bin Yu, Zhonghui Zhang, Xiuren Zhang","doi":"10.1038/s41556-024-01530-8","DOIUrl":"https://doi.org/10.1038/s41556-024-01530-8","url":null,"abstract":"<p>The methyltransferase complex (MTC) deposits <i>N</i>6-adenosine (m<sup>6</sup>A) onto RNA, whereas the microprocessor produces microRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B tends to form insoluble condensates with poor activity, with its level monitored by the 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promote the solubility and stability of the MTC subunit B, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behaviour, exhibit reduced m<sup>6</sup>A levels. Reciprocally, MTC can recruit the microprocessor to the <i>MIRNA</i> loci, prompting co-transcriptional cleavage of primary miRNA substrates. Additionally, primary miRNA substrates carrying m<sup>6</sup>A modifications at their single-stranded basal regions are enriched by m<sup>6</sup>A readers, which retain the microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option 脑血管和脑实质之间的硬度差异通过血管共用促进转移浸润
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-24 DOI: 10.1038/s41556-024-01532-6
Marina Uroz, Amy E. Stoddard, Bryan P. Sutherland, Olivia Courbot, Roger Oria, Linqing Li, Cara R. Ravasio, Mai T. Ngo, Jinling Yang, Juliann B. Tefft, Jeroen Eyckmans, Xue Han, Alberto Elosegui-Artola, Valerie M. Weaver, Christopher S. Chen
{"title":"Differential stiffness between brain vasculature and parenchyma promotes metastatic infiltration through vessel co-option","authors":"Marina Uroz, Amy E. Stoddard, Bryan P. Sutherland, Olivia Courbot, Roger Oria, Linqing Li, Cara R. Ravasio, Mai T. Ngo, Jinling Yang, Juliann B. Tefft, Jeroen Eyckmans, Xue Han, Alberto Elosegui-Artola, Valerie M. Weaver, Christopher S. Chen","doi":"10.1038/s41556-024-01532-6","DOIUrl":"https://doi.org/10.1038/s41556-024-01532-6","url":null,"abstract":"<p>In brain metastasis, cancer cells remain in close contact with the existing vasculature and can use vessels as migratory paths—a process known as vessel co-option. However, the mechanisms regulating this form of migration are poorly understood. Here we use ex vivo brain slices and an organotypic in vitro model for vessel co-option to show that cancer cell invasion along brain vasculature is driven by the difference in stiffness between vessels and the brain parenchyma. Imaging analysis indicated that cells move along the basal surface of vessels by adhering to the basement membrane extracellular matrix. We further show that vessel co-option is enhanced by both the stiffness of brain vasculature, which reinforces focal adhesions through a talin-dependent mechanism, and the softness of the surrounding environment that permits cellular movement. Our work reveals a mechanosensing mechanism that guides cell migration in response to the tissue’s intrinsic mechanical heterogeneity, with implications in cancer invasion and metastasis.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time and programmable transcriptome sequencing with PROFIT-seq 利用 PROFIT-seq 进行实时和可编程转录组测序
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-23 DOI: 10.1038/s41556-024-01537-1
Jinyang Zhang, Lingling Hou, Lianjun Ma, Zhengyi Cai, Shujun Ye, Yang Liu, Peifeng Ji, Zhenqiang Zuo, Fangqing Zhao
{"title":"Real-time and programmable transcriptome sequencing with PROFIT-seq","authors":"Jinyang Zhang, Lingling Hou, Lianjun Ma, Zhengyi Cai, Shujun Ye, Yang Liu, Peifeng Ji, Zhenqiang Zuo, Fangqing Zhao","doi":"10.1038/s41556-024-01537-1","DOIUrl":"https://doi.org/10.1038/s41556-024-01537-1","url":null,"abstract":"<p>The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces 线粒体机械传导通过 MIEF1 协调核对力的反应
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-21 DOI: 10.1038/s41556-024-01527-3
Patrizia Romani, Giada Benedetti, Martina Cusan, Mattia Arboit, Carmine Cirillo, Xi Wu, Georgia Rouni, Vassiliki Kostourou, Mariaceleste Aragona, Costanza Giampietro, Paolo Grumati, Graziano Martello, Sirio Dupont
{"title":"Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces","authors":"Patrizia Romani, Giada Benedetti, Martina Cusan, Mattia Arboit, Carmine Cirillo, Xi Wu, Georgia Rouni, Vassiliki Kostourou, Mariaceleste Aragona, Costanza Giampietro, Paolo Grumati, Graziano Martello, Sirio Dupont","doi":"10.1038/s41556-024-01527-3","DOIUrl":"https://doi.org/10.1038/s41556-024-01527-3","url":null,"abstract":"<p>Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance—YAP/TAZ, SREBP1/2 and NRF2—to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity—hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ex vivo imaging reveals the spatiotemporal control of ovulation 体外成像揭示排卵的时空控制
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-16 DOI: 10.1038/s41556-024-01524-6
Christopher Thomas, Tabea Lilian Marx, Sarah Mae Penir, Melina Schuh
{"title":"Ex vivo imaging reveals the spatiotemporal control of ovulation","authors":"Christopher Thomas, Tabea Lilian Marx, Sarah Mae Penir, Melina Schuh","doi":"10.1038/s41556-024-01524-6","DOIUrl":"https://doi.org/10.1038/s41556-024-01524-6","url":null,"abstract":"<p>During ovulation, an egg is released from an ovarian follicle, ready for fertilization. Ovulation occurs inside the body, impeding direct studies of its progression. Therefore, the exact mechanisms that control ovulation have remained unclear. Here we devised live imaging methods to study the entire process of ovulation in isolated mouse ovarian follicles. We show that ovulation proceeds through three distinct phases, follicle expansion (I), contraction (II) and rupture (III), culminating in the release of the egg. Follicle expansion is driven by hyaluronic acid secretion and an osmotic gradient-directed fluid influx into the follicle. Then, smooth muscle cells in the outer follicle drive follicle contraction. Follicle rupture begins with stigma formation, followed by the exit of follicular fluid and cumulus cells and the rapid release of the egg. These results establish a mechanistic framework for ovulation, a process of fundamental importance for reproduction.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste management and cell death in T cells T 细胞中的废物管理和细胞死亡
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-16 DOI: 10.1038/s41556-024-01538-0
Douglas R. Green
{"title":"Waste management and cell death in T cells","authors":"Douglas R. Green","doi":"10.1038/s41556-024-01538-0","DOIUrl":"https://doi.org/10.1038/s41556-024-01538-0","url":null,"abstract":"After being activated, T lymphocytes must consume fuel for energy and biomaterials to sustain rapid proliferation and differentiation. As a consequence, waste is generated that must be managed. A new study now explores how activated CD8+ effector T cells handle ammonia, and how this impacts the survival and function of these cells.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Now it’s getting bloody in cardiac organoids 现在,它在心脏器官组织中变得鲜血淋漓
IF 21.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-16 DOI: 10.1038/s41556-024-01528-2
Thomas Brand
{"title":"Now it’s getting bloody in cardiac organoids","authors":"Thomas Brand","doi":"10.1038/s41556-024-01528-2","DOIUrl":"https://doi.org/10.1038/s41556-024-01528-2","url":null,"abstract":"Modelling definitive haematopoiesis in organoids has been challenging. A study now develops blood-generating heart-forming organoids that display heart muscle, vascular endothelium formation and definitive haematopoiesis. This organoid represents an in vitro model of human embryonic circulatory system development.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing RNA polymerase dynamics RNA 聚合酶动态可视化
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01534-4
Sabrya Carim
{"title":"Visualizing RNA polymerase dynamics","authors":"Sabrya Carim","doi":"10.1038/s41556-024-01534-4","DOIUrl":"10.1038/s41556-024-01534-4","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Helping cancer switch sides 帮助癌症患者换位思考
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01536-2
Stylianos Lefkopoulos
{"title":"Helping cancer switch sides","authors":"Stylianos Lefkopoulos","doi":"10.1038/s41556-024-01536-2","DOIUrl":"10.1038/s41556-024-01536-2","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diet and longevity 饮食与长寿
IF 17.3 1区 生物学
Nature Cell Biology Pub Date : 2024-10-11 DOI: 10.1038/s41556-024-01535-3
Melina Casadio
{"title":"Diet and longevity","authors":"Melina Casadio","doi":"10.1038/s41556-024-01535-3","DOIUrl":"10.1038/s41556-024-01535-3","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信