Nature Climate Change最新文献

筛选
英文 中文
Global exposure risk of frogs to increasing environmental dryness 全球青蛙暴露于日益干燥环境的风险
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-21 DOI: 10.1038/s41558-024-02167-z
Nicholas C. Wu, Rafael Parelli Bovo, Urtzi Enriquez-Urzelai, Susana Clusella-Trullas, Michael R. Kearney, Carlos A. Navas, Jacinta D. Kong
{"title":"Global exposure risk of frogs to increasing environmental dryness","authors":"Nicholas C. Wu, Rafael Parelli Bovo, Urtzi Enriquez-Urzelai, Susana Clusella-Trullas, Michael R. Kearney, Carlos A. Navas, Jacinta D. Kong","doi":"10.1038/s41558-024-02167-z","DOIUrl":"https://doi.org/10.1038/s41558-024-02167-z","url":null,"abstract":"<p>Compared with the risks associated with climate warming and extremes, the risks of climate-induced drying to animal species remain understudied. This is particularly true for water-sensitive groups, such as anurans (frogs and toads), whose long-term survival must be considered in the context of both environmental changes and species sensitivity. Here, we mapped global areas where anurans will face increasing water limitations, analysed ecotype sensitivity to water loss and modelled behavioural activity impacts under future climate change scenarios. Predictions indicate that 6.6–33.6% of anuran habitats will become arid like by 2080–2100, with 15.4–36.1% exposed to worsening drought, under an intermediate- and high-emission scenario, respectively. Arid conditions are expected to double water loss rates, and combined drought and warming will double reductions in anuran activity compared with warming impacts alone by 2080–2100. These findings underscore the pervasive synergistic threat of warming and environmental drying to anurans.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate change is increasingly affecting fires worldwide 气候变化对全球火灾的影响日益严重
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2024-10-21 DOI: 10.1038/s41558-024-02141-9
{"title":"Climate change is increasingly affecting fires worldwide","authors":"","doi":"10.1038/s41558-024-02141-9","DOIUrl":"10.1038/s41558-024-02141-9","url":null,"abstract":"Multiple fire models, within an impact attribution framework, have been used to explore how climate change is impacting fire worldwide. Results show that climate change is increasing burned area in most regions, particularly during periods of peak fire activity, and this effect is increasing over time. However, changes in population and land use are mitigating some of the effects of climate change.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":29.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate justice beliefs related to climate action and policy support around the world 与世界各地气候行动和政策支持有关的气候正义理念
IF 29.6 1区 地球科学
Nature Climate Change Pub Date : 2024-10-18 DOI: 10.1038/s41558-024-02168-y
Charles A. Ogunbode, Rouven Doran, Arin H. Ayanian, Joonha Park, Akira Utsugi, Karlijn L. van den Broek, Jihane Ghorayeb, Sibele D. Aquino, Samuel Lins, John J. B. R. Aruta, Marc E. S. Reyes, Andreas Zick, Susan Clayton
{"title":"Climate justice beliefs related to climate action and policy support around the world","authors":"Charles A. Ogunbode,&nbsp;Rouven Doran,&nbsp;Arin H. Ayanian,&nbsp;Joonha Park,&nbsp;Akira Utsugi,&nbsp;Karlijn L. van den Broek,&nbsp;Jihane Ghorayeb,&nbsp;Sibele D. Aquino,&nbsp;Samuel Lins,&nbsp;John J. B. R. Aruta,&nbsp;Marc E. S. Reyes,&nbsp;Andreas Zick,&nbsp;Susan Clayton","doi":"10.1038/s41558-024-02168-y","DOIUrl":"10.1038/s41558-024-02168-y","url":null,"abstract":"Climate justice is increasingly prominent in climate change communication and advocacy but little is known about public understanding of the concept or how widely it resonates with different groups. In our global survey of 5,627 adults in 11 countries spanning the global north and south, most participants (66.2%) had never heard of climate justice. Nonetheless, endorsement of climate justice beliefs was widespread (for example, acknowledging the disproportionate impact of climate change on poor people and the underpinning roles of capitalism and colonialism in the climate crisis). Climate justice beliefs were also associated with various indices of climate action and policy support. These associations tended to be stronger in countries with high GHG emissions and where social inequality is also more politically salient. The results highlight the value of climate justice as a motive for climate action across diverse geographical contexts. Little is known about public understanding of climate justice, despite its increasing prominence in climate change communication. Here a global survey reveals that, although awareness of climate justice is low, beliefs in climate justice are widely supported across countries.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":29.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41558-024-02168-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drought and aridity influence internal migration worldwide 干旱和干旱影响世界各地的国内移徙
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-15 DOI: 10.1038/s41558-024-02165-1
Roman Hoffmann, Guy Abel, Maurizio Malpede, Raya Muttarak, Marco Percoco
{"title":"Drought and aridity influence internal migration worldwide","authors":"Roman Hoffmann, Guy Abel, Maurizio Malpede, Raya Muttarak, Marco Percoco","doi":"10.1038/s41558-024-02165-1","DOIUrl":"https://doi.org/10.1038/s41558-024-02165-1","url":null,"abstract":"<p>While the effects of climatic changes on migration have received widespread public and scientific attention, comparative evidence for their influence on internal migration worldwide remains scarce. Here we use census-based data from 72 countries (1960–2016) to analyse 107,840 migration flows between subnational regions. We find that increased drought and aridity have a significant impact on internal migration, particularly in the hyper-arid and arid areas of Southern Europe, South Asia, Africa and the Middle East and South America. Migration patterns are shaped by the wealth, agricultural dependency and urbanization of both origin and destination areas with migration responses being stronger in rural and predominantly agricultural areas. While overall climatic effects on migration are stronger in richer countries, we observe higher out-migration from poorer towards wealthier regions within countries. Furthermore, age and education groups respond differently to climatic stress, highlighting distinct mobility patterns of population subgroups across different geographic contexts.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microclimate regulates when autumn leaves fall 微气候调节秋叶飘落的时间
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-14 DOI: 10.1038/s41558-024-02154-4
David H. Klinges
{"title":"Microclimate regulates when autumn leaves fall","authors":"David H. Klinges","doi":"10.1038/s41558-024-02154-4","DOIUrl":"https://doi.org/10.1038/s41558-024-02154-4","url":null,"abstract":"Climate influences when leaves change colour and fall, but not all trees lose their leaves at the same time. Combining field data, mathematical models and remote sensing, researchers show how local-scale variation in tree canopies and understory temperatures alters the start and duration of autumn leaf colouration and forecast reduced autumn delays under climate change.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Canopy structure regulates autumn phenology by mediating the microclimate in temperate forests 树冠结构通过调节温带森林的小气候来调节秋季物候变化
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-14 DOI: 10.1038/s41558-024-02164-2
Xiaoyong Wu, Chunyue Niu, Xiaoqiang Liu, Tianyu Hu, Yuhao Feng, Yingyi Zhao, Shuwen Liu, Zhonghua Liu, Guanhua Dai, Yao Zhang, Koenraad Van Meerbeek, Jin Wu, Lingli Liu, Qinghua Guo, Yanjun Su
{"title":"Canopy structure regulates autumn phenology by mediating the microclimate in temperate forests","authors":"Xiaoyong Wu, Chunyue Niu, Xiaoqiang Liu, Tianyu Hu, Yuhao Feng, Yingyi Zhao, Shuwen Liu, Zhonghua Liu, Guanhua Dai, Yao Zhang, Koenraad Van Meerbeek, Jin Wu, Lingli Liu, Qinghua Guo, Yanjun Su","doi":"10.1038/s41558-024-02164-2","DOIUrl":"https://doi.org/10.1038/s41558-024-02164-2","url":null,"abstract":"<p>Autumn phenology plays a critical role in shaping the carbon sequestration capacity of temperate forests. Notable local-scale variations in autumn phenology have drawn increasing attention recently, potentially introducing substantial uncertainty when predicting temperate forest productivity. Yet the underpinning mechanisms driving these variations remain inadequately elucidated. Here we observed significant and consistent relationships between canopy structure and autumn phenology across six temperate forest sites, induced by the regulation effect of canopy structure on microclimate conditions. Incorporating the identified ‘canopy structure–microclimate–autumn phenology’ pathway into existing autumn phenology models significantly improves the prediction accuracy and reduces the projected delay in the start of autumn over the remainder of the century. These findings offer a new perspective for interpreting the local variations of autumn phenology in temperate forests and emphasize the urgent need to integrate the identified pathway into the Earth system and vegetation models, especially considering the asynchronous changes of macroclimate and microclimate conditions.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relaxing fertility policies and delaying retirement age increase China’s carbon emissions 放宽生育政策和延迟退休年龄会增加中国的碳排放量
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-11 DOI: 10.1038/s41558-024-02145-5
Ling Tang, Junai Yang, Jiali Zheng, Xinlu Sun, Lu Cheng, Kehan He, Ling Li, Jinkai Li, Wenjia Cai, Shouyang Wang, Paul Drummond, Zhifu Mi
{"title":"Relaxing fertility policies and delaying retirement age increase China’s carbon emissions","authors":"Ling Tang, Junai Yang, Jiali Zheng, Xinlu Sun, Lu Cheng, Kehan He, Ling Li, Jinkai Li, Wenjia Cai, Shouyang Wang, Paul Drummond, Zhifu Mi","doi":"10.1038/s41558-024-02145-5","DOIUrl":"https://doi.org/10.1038/s41558-024-02145-5","url":null,"abstract":"Relaxing fertility policies and delaying retirement age would increase China’s household carbon footprint mainly by boosting population and labour. Policymakers should synergize policies targeting population ageing and climate change, which are both crucial for sustainable development.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maize breeding for smaller tassels threatens yield under a warming climate 在气候变暖的情况下,培育小穗玉米会威胁产量
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-11 DOI: 10.1038/s41558-024-02161-5
Yingjun Zhang, Xin Dong, Hongyu Wang, Yihsuan Lin, Lian Jin, Xuanlong Lv, Qian Yao, Baole Li, Jia Gao, Pu Wang, Baobao Wang, Shoubing Huang
{"title":"Maize breeding for smaller tassels threatens yield under a warming climate","authors":"Yingjun Zhang, Xin Dong, Hongyu Wang, Yihsuan Lin, Lian Jin, Xuanlong Lv, Qian Yao, Baole Li, Jia Gao, Pu Wang, Baobao Wang, Shoubing Huang","doi":"10.1038/s41558-024-02161-5","DOIUrl":"https://doi.org/10.1038/s41558-024-02161-5","url":null,"abstract":"<p>Breeding programmes have increased the yields of major crops, including maize (<i>Zea mays</i> L.), but the suitability of optimized traits to future climates remains unclear. Here, by comparing the responses of 323 elite maize inbred lines from different breeding eras under natural field conditions, we show that while newer lines exhibit higher grain yield than the early released lines under standard growth, the bred trait of reduced tassel size increases the susceptibility of newly released lines to high temperature during flowering. We identified a potential threshold for spikelets per tassel (~700), over which maize can produce a stably high seed set ratio under warm conditions, and show that small-tassel (&lt;700 spikelets per tassel) genotypes are now unsuitable in 23.7% of global maize-growing regions. Our work highlights the need to consider possible climate change maladaptation resulting from breeding programmes.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the impacts of fertility and retirement policies on China’s carbon emissions 评估生育和退休政策对中国碳排放的影响
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-11 DOI: 10.1038/s41558-024-02162-4
Ling Tang, Junai Yang, Jiali Zheng, Xinlu Sun, Lu Cheng, Kehan He, Ling Li, Jinkai Li, Wenjia Cai, Shouyang Wang, Paul Drummond, Zhifu Mi
{"title":"Assessing the impacts of fertility and retirement policies on China’s carbon emissions","authors":"Ling Tang, Junai Yang, Jiali Zheng, Xinlu Sun, Lu Cheng, Kehan He, Ling Li, Jinkai Li, Wenjia Cai, Shouyang Wang, Paul Drummond, Zhifu Mi","doi":"10.1038/s41558-024-02162-4","DOIUrl":"https://doi.org/10.1038/s41558-024-02162-4","url":null,"abstract":"<p>The gradual adjustment of fertility and retirement policies in China has social benefits in terms of coping with population aging. However, the environmental consequences of these policies remain ambiguous. Here we compile environmentally extended multiregional input–output tables to estimate household carbon footprints for different population age groups in China. Subsequently, we estimate the age-sex-specific population under different fertility policies up to 2060 and assess the impacts of fertility and retirement policies on household carbon footprints. We find that Chinese young people have relatively higher household carbon footprints than their older counterparts due to differences in income by age group. Relaxing fertility policies and delaying retirement age are associated with an increase in population (and labour supply) and thus increases in household carbon footprints, with the majority of these increases from the fertility side. These results may help policymakers understand interactions among those measures targeting population aging and climate action.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to align climate ambition and economic equality 如何使气候目标与经济平等相一致
IF 30.7 1区 地球科学
Nature Climate Change Pub Date : 2024-10-10 DOI: 10.1038/s41558-024-02152-6
{"title":"How to align climate ambition and economic equality","authors":"","doi":"10.1038/s41558-024-02152-6","DOIUrl":"https://doi.org/10.1038/s41558-024-02152-6","url":null,"abstract":"A multi-model study demonstrates that well-designed climate policies that mitigate climate impacts and redistribute carbon revenues to households can stabilize the climate while also reducing economic inequality.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":30.7,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信