{"title":"Evaluation of anti- cancer and antioxidant properties of nanoemulsions synthesized by Nigella Sativa L. tincture","authors":"Sanaz Arazmjoo, A. Es‐haghi, H. Mahmoodzadeh","doi":"10.22038/NMJ.2021.08.06","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.06","url":null,"abstract":"Objective(s): Today, the use of medicinal plants for treating cancer is extremely important. Over the past few years, the anti-cancer properties of Nigella Sativa L. have been proven. The aim of the present study was to evaluate, the cytotoxic effect of a nanoemulsion synthesized using N. Sativa L. tincture, against a cancerous cell line as well as its and free radical scavenging activities.Materials and Methods: The size and zeta potential of the nanoemulsion were determined using particle size analyzer and morphological shape of nano emulsion was visualized by transmission electron microscopy (TEM). The antioxidant activity of nanoemulsions was investigated by the DPPH assay. Cytotoxic effects of the nanoemulsions were assessed by MTT method against A2780 ovarian cancer and umbilical vein endothelial cells (HUVEC) as normal cells. To evaluate the probable molecular mechanism of cell death, acridine orange and propidium iodide staining methods were used for identifying apoptotic cells. Results: The results obtained from this study showed that the synthesized nanoemulsion had a good and dose-dependent radical scavenging capacity in the DPPH assay (IC50 of about 47μg/ml). Also, the nanoemulsion significantly reduced the bioavailability of A2780 cancerous cells (IC50 of 0.72 μg/ml); however, its toxicity against HUVEC cells was much lower (IC50 > 25 μg/ml). The pro-apoptotic effect of the produced nanoemulsion was confirmed by acridine orange and propidium iodide staining.Conclusion: Nano emulsions synthesized by N. Sativa L. tincture has a relevant potential antioxidant and anticancer effects and therefore they can be considered and studied as anticancer compounds in future experiments.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68371169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cerium oxide nanoparticles mitigate retinal pigment epithelium (RPE) death using APRE19 cell model","authors":"E. Dahl, N. Efstathiou, Amit K. Roy","doi":"10.22038/NMJ.2021.08.02","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.02","url":null,"abstract":"Objective(s): In this study, we present the potential of cerium oxide nanoparticle pretreatment on ARPE-19 cells, a cell line of the Retinal Pigment Epithelium (RPE), as a therapeutic modality to cellular stresses such as low serum starvation.Materials and Methods: ARPE-19 cells were pretreated with nano-cerium oxide at a concentration of 500 µg/mL before low serum stress was induced for 24, 48, 72, and 96 hours. Starvation stress was induced by using low concentrations of Fetal Bovine Serum (FBS) media at three increments: 10%, 1%, 0.1%.Results: Contrast images demonstrated higher cell confluence and cell integrity in cells pretreated with cerium oxide nanoparticles compared to untreated cells. Increased cell viability for cerium oxide pretreated cells was confirmed by MTS assay after 96 hours of serum starvation.Conclusion: By using nanoparticles to influence pathways of apoptosis, we hope to rescue ARPE-19 cells from a range of stressors, including oxidative stress, and re-establish homeostasis for the cell. Nanoparticles may represent a novel class of therapeutics for diseases of the eye, like AMD and blue-light induced oxidative stress.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68370966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra shamasi, A. Es‐haghi, M. E. T. Yazdi, M. Amiri, Masoud Homayouni-Tabrizi
{"title":"Role of Rubia tinctorum in the synthesis of zinc oxide nanoparticles and apoptosis induction in breast cancer cell line","authors":"Zahra shamasi, A. Es‐haghi, M. E. T. Yazdi, M. Amiri, Masoud Homayouni-Tabrizi","doi":"10.22038/NMJ.2021.08.07","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.07","url":null,"abstract":"Objective(s): Nowadays, nanotechnology has offered great success in resolving concerns in cancer therapy and created a new interdisciplinary field of study incorporating various sciences, such as biology, chemistry and medicine. Apoptosis is a conserved and controlled strategy in regulating cellular growth and proliferation, as well as preserving development and general homeostasis of the body. Zinc oxide nanoparticles (ZnO-NPs) are the most important and widely used nanoparticles. This study aimed to evaluate the apoptosis-inducing properties of the synthesized ZnO-NPs by aqueous extract of Rubia tinctorum against the MCF7 breast cancer cell line. Materials and Methods: Zinc oxide nanoparticles were synthesized using Rubia tinctorum extract and characterized by some methods including dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis (XRD). Apoptosis was measured by the Hoechst and Acridine-Orange/Propodium Iodide staining, as well as flow cytometry. Results: The results of this study showed that the particle size of biosynthesized ZnO-NPs using R.tinctorum extract was about 40 nm and had a spherical morphology. The obtain results of the Hoechst and Acridine-Orange/Propodium Iodide staining, as well as flow cytometry showed that biosynthesized ZnO-NPs effectively and dose-dependently induced apoptosis in the MCF7 breast cancer cells.Conclusion: Therefore, the biosynthesized ZnO-NPs by watery extract of R. tinctorum can be used in the treatment of many diseases, including cancers.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68371282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probing the effects of synthesized silver nanowire/reduced graphene oxide composites on the structure and esterase-like activity of human serum albumin and its impacts on human endometrial stem cells: A new platform in nanomedicine","authors":"A. Hekmat, Shadie Hatamie, E. Bakhshi","doi":"10.22038/NMJ.2021.08.05","DOIUrl":"https://doi.org/10.22038/NMJ.2021.08.05","url":null,"abstract":"Objective(s): Nowadays, the unique and fascinating properties of graphene‐based nanocomposites make them one of the most promising materials for therapeutics, delivery carriers as well as tissue engineering. On the other hand, silver nanowire has been attracting more attention in nanomedicine applications, too. In this study, the effects of synthesized silver nanowire/reduced graphene oxide (AgNWs/rGO) composites on the structure and esterase-like activity of Human Serum Albumin (HSA), as well as its impacts on Human Endometrial Stem Cells (hEnSCs), were evaluatedMaterials and Methods: AgNWs/rGO composite was first synthesized and fabricated. Subsequently, its effects on the structure and esterase-like activity of HSA were evaluated by UV-Visible spectroscopy, circular dichroism spectroscopy, and fluorescence spectroscopy. Afterward, its impacts on the viability and growth of hEnSCs were studied by MTT assay, DAPI staining, and flow cytometry analysis.Results: The spectroscopic results showed that AgNWs/rGO composite could form a complex with HSA, however, did not affect the secondary structure of HSA and the binding constant for this complex was found to be 5.4×104 mL.mg-1. Furthermore, HSA maintained most of its activity in the presence of the AgNWs/rGO composite. Based on FRET (fluorescence resonance energy transfer) data the value of r0 was less than 7 nm signifying that the energy transfer from HSA to AgNWs/rGO composite occurs with a high level of possibility. The MTT assay, DAPI staining, and flow cytometry analysis indicated that the AgNWs/rGO composite was non-toxic towards hEnSCs. Conclusion: Our results suggest that the prepared AgNWs/rGO composite, potentially, is suitable in nanomedicine applications such as tissue engineering and drug delivery.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68370988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Fakhraei, S. Mousavi, Mahsa Adl, S. Pishva, Fatemeh Tabarsa, S. Rezayat, Amir Rashidian, A. Dehpour
{"title":"Berberine nanomicelles attenuate cirrhotic cardiomyopathy in rats: Possible involvement of the NO-cGMP signaling","authors":"N. Fakhraei, S. Mousavi, Mahsa Adl, S. Pishva, Fatemeh Tabarsa, S. Rezayat, Amir Rashidian, A. Dehpour","doi":"10.22038/NMJ.2020.07.00006","DOIUrl":"https://doi.org/10.22038/NMJ.2020.07.00006","url":null,"abstract":"Objective(s): In cirrhotic cardiomyopathy, a rise in pro-inflammatory cytokines results in the up-regulation of inducible nitric oxide synthase (iNOS), and the overproductions of nitric oxide (NO) and cyclic guanosine 3’, 5’ monophosphate (cGMP). Berberine (BBR), an isoquinoline-derived alkaloid isolated from Rhizoma coptidis, possesses anti-inflammatory, anti-oxidative, and cardioprotective properties. In this study, the effect of BBR-loaded micelles in a rat model of cirrhotic cardiomyopathy resulted from bile duct-ligation (BDL) was examined. Further, a possible role for NO-cGMP signaling was clarified. Materials and Methods: Cirrhotic rats were orally treated with BBR-loaded micelles (50 mg/kg), free BBR (50 and 100 mg/kg) and silymarin (100 mg/kg). A selective iNOS inhibitor, aminoguanidine (AG) 100 mg/kg, i.p., was administered. iNOS expression and nitrite concentration were calculated using immunohistochemistry (IHC) and Griess reagent methods, respectively. Besides, ventricular tumor necrosis factor-alpha (TNF-α), cGMP, and serum interleukin -1beta (IL-1β) were measured using ELISA kits. Results: TNF-α and IL-1β, nitrite, cGMP, and the expression of iNOS increased significantly in BDL rats. However, BBR (100 mg/kg), nanoBBR (50 mg/kg), and silymarin markedly lowered the levels of these markers. Notably, AG increased the nanoBBR effect.Conclusion: This cardioprotective effect of nanoBBR probably mediated at least in part by down-regulations of the NO-cGMP pathway, and the inflammatory mediators.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46733214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of curcumin-loaded soluble soy bean polysaccharide/TiO2 bio-nanocomposite for improved antimicrobial activity","authors":"D. Salarbashi, M. Tafaghodi, Mojtaba Heydari-Majd","doi":"10.22038/NMJ.2020.07.00005","DOIUrl":"https://doi.org/10.22038/NMJ.2020.07.00005","url":null,"abstract":"Objective(s): Bioactive compounds like curcumin can be incorporated into food packaging formulation either to enhance physico-mechanical properties or to improve the biological activity of the packaging systems. Furthermore, it enables the packaging to monitor the changes in food quality. Materials and Methods: In the present study, the effect of curcumin concentration (0.2, 0.4 and 0.6%) on physico-mechanical and biological activity of soluble soy bean polysaccharide (SSPS)/TiO2 nanoparticles nanocomposites were investigated. Additionally, the release behavior of this bioactive compound from the developed film was tested. Finally, the color changing of SSPS/TiO2 nanoparticles/curcumin nanocomposites in contact with different mediums were examined. Results: When the curcumin concentration increased up to a certain point (0.4 %), the physical and mechanical properties of the film improved, but beyond this point, an opposite effect was observed. SSPS/TiO2 nanocomposite showed strong antibacterial activity against both gram positive and negative bacteria. Small amount of curcumin released in ethanol as a food simulant. Conclusion: The films incorporated by curcumin can be used as promising packaging systems for non-destructively detecting quality and freshness of foods.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44082391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Malekzadeh, Vahid Sadeghi Zali, O. Jahanbakhsh, M. Okutan, A. Mesbahi
{"title":"The preparation and characterization of silicon-based composites doped with BaSO4, WO3, and PbO nanoparticles for shielding applications in PET and nuclear medicine facilities","authors":"R. Malekzadeh, Vahid Sadeghi Zali, O. Jahanbakhsh, M. Okutan, A. Mesbahi","doi":"10.22038/NMJ.2020.07.00009","DOIUrl":"https://doi.org/10.22038/NMJ.2020.07.00009","url":null,"abstract":"Objective(s): The present study aimed to design new nanoparticle-based shielding materials for photons used in single-photon emission computed tomography and positron emission tomography facilities. Materials and Methods: Initially, the mass attenuation coefficients and half value layer (HVL) of the composites were comprehensively investigated based on a silicon rubber containing various ratios of micro- and nano-barium sulfate (BaSO4), lead oxide (PbO), and tungsten oxide (WO3) particles at 60, 80, 100, 150, 200, 300, 400, 500, and 600 keV photon energies using the MCNP-X6 Monte Carlo (MC) code and WinXCOM software. In the second stage, the composites composed of 10 wt% and 20 wt% WO3 and PbO particles were constructed in a liquid silicone rubber-based matrix. The mass attenuation coefficients and HVL of the designed shields were experimentally assessed using Cs-137 and Am-241 radioactive sources.Results: The particles sizes of PbO and WO3 were within the range of 50-200 nanometers. The MC and measurement results indicated that the linear attenuation coefficients of the composites were augmented with the addition of all the studied nano- and micro-particles. However, the PbO composites had more significant shielding properties compared to the BaSO4 and WO3 composites. Conclusion: According to the results, the nanocomposites had better ability to shield γ-rays at both energies compared to the micro-composites.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44932420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mirzaei, M. Akbari, M. Mohagheghi, S. Tavangar, Bita Mehravi, M. Ardestani
{"title":"In vitro and in vivo toxicity and histopathological evaluation of Gd(III)anionic Linear globular dendrimer second-generation G2-C595 nanoprobe","authors":"M. Mirzaei, M. Akbari, M. Mohagheghi, S. Tavangar, Bita Mehravi, M. Ardestani","doi":"10.22038/NMJ.2020.07.00004","DOIUrl":"https://doi.org/10.22038/NMJ.2020.07.00004","url":null,"abstract":"Objective(s): Toxico-histopathological studies are used to assess the toxic impacts of nanoparticles in organism exposure. The present study aimed to evaluate the prospective nano-cytotoxicity impacts of Gd(III)-anionic linear globular dendrimer second-generation G2-C595 (Gd[III] dendrimer G2-C595) contrast nanoprobe in terms of the exposure of many nude mice organs and organisms. In addition, we assessed the potential of the Gd(III)-dendrimer G2-C595 nanoprobe as a novel magnetic resonance imaging (MRI) nano-contrast agent for the human breast cancer cell line (MCF-7) and human embryonic kidney cell line (HEK-293).Materials and Methods: Gadolinium (Gd[III]) was loaded with dendrimer G2 and conjugated with the C595 monoclonal antibody to generate the Gd(III)-dendrimer G2-C595 to determine the impact on MUC1 beneficial cancer tumors. The cytotoxic effects of the Gd(III)-dendrimer G2-C595 nanoprobe on the HEK-293 cells were also investigated in-vitro and in-vivo. In addition, the Gd(III)-dendrimer G2-C595 nanoprobe was used on nude mice bearing the MCF-7 tumors to explore its specific activity against the in-vivo model of cancer.Results: The Gd(III)-dendrimer G2-C595 contrast nanoprobes affected the cytotoxicity of MCF-7, and no in-vivo toxicity was induced in the HEK-293 cells, kidneys, heart, lungs, brain, liver tissues, and other organs.Conclusion: According to the results, the Gd(III)-dendrimer G2 and Gd(III)-dendrimer G2-C595 induced no toxicity in the HEK-293 cells and heart, liver, and brain tissues of mice. In addition, the Gd(III)-dendrimer G2-C595 showed specific anti-action against the in-vivo tumor model. Therefore, the Gd(III)-dendrimer G2-C595 nanoprobe is highly recommended as a novel and effective MR contrast agent and antitumor carrier agent. Furthermore, the Gd(III)-dendrimer G2-C595 nano-sized probes demonstrated excellent biocompatibility and safety with no impact on normal organ functioning.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46697961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Samadi, M. Javanmardi, S. J. Porzani, S. Hosseinkhani
{"title":"Decrease of catalytic efficiency of Photinus pyralis firefly luciferase in the presence of graphene quantum dots","authors":"E. Samadi, M. Javanmardi, S. J. Porzani, S. Hosseinkhani","doi":"10.22038/NMJ.2020.07.00007","DOIUrl":"https://doi.org/10.22038/NMJ.2020.07.00007","url":null,"abstract":"Objective(s): Firefly luciferase is a monooxygenase enzyme that emits flash of light during the enzymatic reaction. Luciferase has been used in many bioanalytical fields from ATP detection methods to in vivo imaging. In recent decades, focus has been carried out on nanoparticles for their fluorescence properties. Semiconductor quantum dots have unique tunable properties that turn them promising tools in biological and biomedical researches, as nanosensors, photo-electrochemical and light-emitting devices. Carbon-based nanoparticles such as graphene quantum dots (GQDs) have useful benefits such as low toxicity, suitable luminescence and easy preparation. Materials and Methods: In this study, recombinant P. pyralis luciferase was expressed and purified based on N-terminal His-tag and then kinetic parameters of enzyme activity such as Km and Vmax values in presence and absence of GQDs were calculated. Results: The results showed that Km for ATP and luciferin substrates in the presence of GQDs were increased. Fluorescence spectroscopy showed significant changes in protein structure or in fluorescence spectra and decrease in the activity of the luciferase in presence of GQD. Both loss of activity and increase of substrates Km showed decrease of catalytic efficiency presumably through structural alteration. Conclusion: From these data it can be concluded that the protein structure under the influence of GQD may have changed that lead to alteration of enzyme activity.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48081160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Barabadi, H. Vahidi, Masoumeh Rashedi, M. Mahjoub, Anima Nanda, M. Saravanan
{"title":"Recent advances in biological mediated cancer research using silver nanoparticles as a promising strategy for hepatic cancer therapeutics: a systematic review","authors":"H. Barabadi, H. Vahidi, Masoumeh Rashedi, M. Mahjoub, Anima Nanda, M. Saravanan","doi":"10.22038/NMJ.2020.07.00001","DOIUrl":"https://doi.org/10.22038/NMJ.2020.07.00001","url":null,"abstract":"Nanoparticles are of highlighted interest in scientific research for a wide range of applications as they bridge the gap between atomic structures and bulk materials with unique physicochemical properties. This systematic review was aimed to study the current trends in biological mediated cancer research using biogenic silver nanoparticles (AgNPs) against hepatic cancer cell lines. For this purpose, the electronic databases including Cochrane Library, PubMed, Scopus, Science Direct, ProQuest, Embase, and Web of Science were searched. Forty-six studies passed the eligibility assessments and entered into the current study. All of the studies stated the size distribution of biosynthesized AgNPs below 100 nm with different shapes. Whereas, most studies stated spherical morphology for biogenic AgNPs. Most of the studies (91.30%) represented significant anticancer activity of biogenic AgNPs toward hepatic cancer cell lines. The molecular mechanisms also showed the induction of intracellular Reactive Oxygen Species (ROS) and apoptosis through the biogenic AgNPs-treated hepatic cancer cells. The AgNPs-mediated induction of intracellular ROS overgeneration and ATP synthesis interruption disturb the mitochondria respiratory chain function resulting in the induction of mitochondrial pathway apoptosis. Overall, this systematic review provided strong preliminary evidence representing the efficacy of biogenic AgNPs to combat hepatic cancer cells through in vitro models.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48613668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}