Probing the effects of synthesized silver nanowire/reduced graphene oxide composites on the structure and esterase-like activity of human serum albumin and its impacts on human endometrial stem cells: A new platform in nanomedicine

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
A. Hekmat, Shadie Hatamie, E. Bakhshi
{"title":"Probing the effects of synthesized silver nanowire/reduced graphene oxide composites on the structure and esterase-like activity of human serum albumin and its impacts on human endometrial stem cells: A new platform in nanomedicine","authors":"A. Hekmat, Shadie Hatamie, E. Bakhshi","doi":"10.22038/NMJ.2021.08.05","DOIUrl":null,"url":null,"abstract":"Objective(s): Nowadays, the unique and fascinating properties of graphene‐based nanocomposites make them one of the most promising materials for therapeutics, delivery carriers as well as tissue engineering. On the other hand, silver nanowire has been attracting more attention in nanomedicine applications, too. In this study, the effects of synthesized silver nanowire/reduced graphene oxide (AgNWs/rGO) composites on the structure and esterase-like activity of Human Serum Albumin (HSA), as well as its impacts on Human Endometrial Stem Cells (hEnSCs), were evaluatedMaterials and Methods: AgNWs/rGO composite was first synthesized and fabricated. Subsequently, its effects on the structure and esterase-like activity of HSA were evaluated by UV-Visible spectroscopy, circular dichroism spectroscopy, and fluorescence spectroscopy. Afterward, its impacts on the viability and growth of hEnSCs were studied by MTT assay, DAPI staining, and flow cytometry analysis.Results: The spectroscopic results showed that AgNWs/rGO composite could form a complex with HSA, however, did not affect the secondary structure of HSA and the binding constant for this complex was found to be 5.4×104 mL.mg-1. Furthermore, HSA maintained most of its activity in the presence of the AgNWs/rGO composite. Based on FRET (fluorescence resonance energy transfer) data the value of r0 was less than 7 nm signifying that the energy transfer from HSA to AgNWs/rGO composite occurs with a high level of possibility. The MTT assay, DAPI staining, and flow cytometry analysis indicated that the AgNWs/rGO composite was non-toxic towards hEnSCs. Conclusion: Our results suggest that the prepared AgNWs/rGO composite, potentially, is suitable in nanomedicine applications such as tissue engineering and drug delivery.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2021.08.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Objective(s): Nowadays, the unique and fascinating properties of graphene‐based nanocomposites make them one of the most promising materials for therapeutics, delivery carriers as well as tissue engineering. On the other hand, silver nanowire has been attracting more attention in nanomedicine applications, too. In this study, the effects of synthesized silver nanowire/reduced graphene oxide (AgNWs/rGO) composites on the structure and esterase-like activity of Human Serum Albumin (HSA), as well as its impacts on Human Endometrial Stem Cells (hEnSCs), were evaluatedMaterials and Methods: AgNWs/rGO composite was first synthesized and fabricated. Subsequently, its effects on the structure and esterase-like activity of HSA were evaluated by UV-Visible spectroscopy, circular dichroism spectroscopy, and fluorescence spectroscopy. Afterward, its impacts on the viability and growth of hEnSCs were studied by MTT assay, DAPI staining, and flow cytometry analysis.Results: The spectroscopic results showed that AgNWs/rGO composite could form a complex with HSA, however, did not affect the secondary structure of HSA and the binding constant for this complex was found to be 5.4×104 mL.mg-1. Furthermore, HSA maintained most of its activity in the presence of the AgNWs/rGO composite. Based on FRET (fluorescence resonance energy transfer) data the value of r0 was less than 7 nm signifying that the energy transfer from HSA to AgNWs/rGO composite occurs with a high level of possibility. The MTT assay, DAPI staining, and flow cytometry analysis indicated that the AgNWs/rGO composite was non-toxic towards hEnSCs. Conclusion: Our results suggest that the prepared AgNWs/rGO composite, potentially, is suitable in nanomedicine applications such as tissue engineering and drug delivery.
探索合成银纳米线/还原氧化石墨烯复合材料对人血清白蛋白结构和酯酶样活性的影响及其对人子宫内膜干细胞的影响:纳米医学的新平台
目的:如今,石墨烯基纳米复合材料独特而迷人的特性使其成为治疗学、递送载体和组织工程中最有前途的材料之一。另一方面,银纳米线在纳米医学方面的应用也越来越受到关注。本研究评估了合成银纳米线/还原氧化石墨烯(AgNWs/rGO)复合材料对人血清白蛋白(HSA)结构和酯酶样活性的影响,以及对人子宫内膜干细胞(hEnSCs)的影响。材料和方法:首先合成并制备了AgNWs/还原氧化石墨烯复合材料。随后,通过紫外可见光谱、圆二色光谱和荧光光谱评价其对人体白蛋白结构和酯酶样活性的影响。随后,采用MTT法、DAPI染色法和流式细胞术分析其对hEnSCs存活和生长的影响。结果:光谱结果表明,AgNWs/rGO复合物可以与HSA形成配合物,但不影响HSA的二级结构,该配合物的结合常数为5.4×104 mL.mg-1。此外,在AgNWs/rGO复合物存在的情况下,HSA保持了大部分活性。根据FRET(荧光共振能量转移)数据,r0值小于7 nm,表明从HSA到AgNWs/rGO复合材料的能量转移具有很高的可能性。MTT实验、DAPI染色和流式细胞术分析表明AgNWs/rGO复合物对hEnSCs无毒。结论:制备的AgNWs/rGO复合材料在组织工程和药物传递等纳米医学领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信