M. Mirzaei, M. Akbari, M. Mohagheghi, S. Tavangar, Bita Mehravi, M. Ardestani
{"title":"Gd(III)阴离子线型球状树状大分子第二代G2-C595纳米探针的体内外毒性和组织病理学评价","authors":"M. Mirzaei, M. Akbari, M. Mohagheghi, S. Tavangar, Bita Mehravi, M. Ardestani","doi":"10.22038/NMJ.2020.07.00004","DOIUrl":null,"url":null,"abstract":"Objective(s): Toxico-histopathological studies are used to assess the toxic impacts of nanoparticles in organism exposure. The present study aimed to evaluate the prospective nano-cytotoxicity impacts of Gd(III)-anionic linear globular dendrimer second-generation G2-C595 (Gd[III] dendrimer G2-C595) contrast nanoprobe in terms of the exposure of many nude mice organs and organisms. In addition, we assessed the potential of the Gd(III)-dendrimer G2-C595 nanoprobe as a novel magnetic resonance imaging (MRI) nano-contrast agent for the human breast cancer cell line (MCF-7) and human embryonic kidney cell line (HEK-293).Materials and Methods: Gadolinium (Gd[III]) was loaded with dendrimer G2 and conjugated with the C595 monoclonal antibody to generate the Gd(III)-dendrimer G2-C595 to determine the impact on MUC1 beneficial cancer tumors. The cytotoxic effects of the Gd(III)-dendrimer G2-C595 nanoprobe on the HEK-293 cells were also investigated in-vitro and in-vivo. In addition, the Gd(III)-dendrimer G2-C595 nanoprobe was used on nude mice bearing the MCF-7 tumors to explore its specific activity against the in-vivo model of cancer.Results: The Gd(III)-dendrimer G2-C595 contrast nanoprobes affected the cytotoxicity of MCF-7, and no in-vivo toxicity was induced in the HEK-293 cells, kidneys, heart, lungs, brain, liver tissues, and other organs.Conclusion: According to the results, the Gd(III)-dendrimer G2 and Gd(III)-dendrimer G2-C595 induced no toxicity in the HEK-293 cells and heart, liver, and brain tissues of mice. In addition, the Gd(III)-dendrimer G2-C595 showed specific anti-action against the in-vivo tumor model. Therefore, the Gd(III)-dendrimer G2-C595 nanoprobe is highly recommended as a novel and effective MR contrast agent and antitumor carrier agent. Furthermore, the Gd(III)-dendrimer G2-C595 nano-sized probes demonstrated excellent biocompatibility and safety with no impact on normal organ functioning.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"7 1","pages":"284-290"},"PeriodicalIF":1.4000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo toxicity and histopathological evaluation of Gd(III)anionic Linear globular dendrimer second-generation G2-C595 nanoprobe\",\"authors\":\"M. Mirzaei, M. Akbari, M. Mohagheghi, S. Tavangar, Bita Mehravi, M. Ardestani\",\"doi\":\"10.22038/NMJ.2020.07.00004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective(s): Toxico-histopathological studies are used to assess the toxic impacts of nanoparticles in organism exposure. The present study aimed to evaluate the prospective nano-cytotoxicity impacts of Gd(III)-anionic linear globular dendrimer second-generation G2-C595 (Gd[III] dendrimer G2-C595) contrast nanoprobe in terms of the exposure of many nude mice organs and organisms. In addition, we assessed the potential of the Gd(III)-dendrimer G2-C595 nanoprobe as a novel magnetic resonance imaging (MRI) nano-contrast agent for the human breast cancer cell line (MCF-7) and human embryonic kidney cell line (HEK-293).Materials and Methods: Gadolinium (Gd[III]) was loaded with dendrimer G2 and conjugated with the C595 monoclonal antibody to generate the Gd(III)-dendrimer G2-C595 to determine the impact on MUC1 beneficial cancer tumors. The cytotoxic effects of the Gd(III)-dendrimer G2-C595 nanoprobe on the HEK-293 cells were also investigated in-vitro and in-vivo. In addition, the Gd(III)-dendrimer G2-C595 nanoprobe was used on nude mice bearing the MCF-7 tumors to explore its specific activity against the in-vivo model of cancer.Results: The Gd(III)-dendrimer G2-C595 contrast nanoprobes affected the cytotoxicity of MCF-7, and no in-vivo toxicity was induced in the HEK-293 cells, kidneys, heart, lungs, brain, liver tissues, and other organs.Conclusion: According to the results, the Gd(III)-dendrimer G2 and Gd(III)-dendrimer G2-C595 induced no toxicity in the HEK-293 cells and heart, liver, and brain tissues of mice. In addition, the Gd(III)-dendrimer G2-C595 showed specific anti-action against the in-vivo tumor model. Therefore, the Gd(III)-dendrimer G2-C595 nanoprobe is highly recommended as a novel and effective MR contrast agent and antitumor carrier agent. Furthermore, the Gd(III)-dendrimer G2-C595 nano-sized probes demonstrated excellent biocompatibility and safety with no impact on normal organ functioning.\",\"PeriodicalId\":18933,\"journal\":{\"name\":\"Nanomedicine Journal\",\"volume\":\"7 1\",\"pages\":\"284-290\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/NMJ.2020.07.00004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2020.07.00004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
In vitro and in vivo toxicity and histopathological evaluation of Gd(III)anionic Linear globular dendrimer second-generation G2-C595 nanoprobe
Objective(s): Toxico-histopathological studies are used to assess the toxic impacts of nanoparticles in organism exposure. The present study aimed to evaluate the prospective nano-cytotoxicity impacts of Gd(III)-anionic linear globular dendrimer second-generation G2-C595 (Gd[III] dendrimer G2-C595) contrast nanoprobe in terms of the exposure of many nude mice organs and organisms. In addition, we assessed the potential of the Gd(III)-dendrimer G2-C595 nanoprobe as a novel magnetic resonance imaging (MRI) nano-contrast agent for the human breast cancer cell line (MCF-7) and human embryonic kidney cell line (HEK-293).Materials and Methods: Gadolinium (Gd[III]) was loaded with dendrimer G2 and conjugated with the C595 monoclonal antibody to generate the Gd(III)-dendrimer G2-C595 to determine the impact on MUC1 beneficial cancer tumors. The cytotoxic effects of the Gd(III)-dendrimer G2-C595 nanoprobe on the HEK-293 cells were also investigated in-vitro and in-vivo. In addition, the Gd(III)-dendrimer G2-C595 nanoprobe was used on nude mice bearing the MCF-7 tumors to explore its specific activity against the in-vivo model of cancer.Results: The Gd(III)-dendrimer G2-C595 contrast nanoprobes affected the cytotoxicity of MCF-7, and no in-vivo toxicity was induced in the HEK-293 cells, kidneys, heart, lungs, brain, liver tissues, and other organs.Conclusion: According to the results, the Gd(III)-dendrimer G2 and Gd(III)-dendrimer G2-C595 induced no toxicity in the HEK-293 cells and heart, liver, and brain tissues of mice. In addition, the Gd(III)-dendrimer G2-C595 showed specific anti-action against the in-vivo tumor model. Therefore, the Gd(III)-dendrimer G2-C595 nanoprobe is highly recommended as a novel and effective MR contrast agent and antitumor carrier agent. Furthermore, the Gd(III)-dendrimer G2-C595 nano-sized probes demonstrated excellent biocompatibility and safety with no impact on normal organ functioning.