Nanotoxicology最新文献

筛选
英文 中文
Chronic toxicity of core-shell SiC/TiO2 (nano)-particles to Daphnia magna under environmentally relevant food rations in the presence of humic acid. 在腐殖酸存在的环境相关食物配给条件下,核壳 SiC/二氧化钛(纳米)颗粒对大型蚤的慢性毒性。
IF 3.6 3区 医学
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-02-29 DOI: 10.1080/17435390.2024.2321873
Kornelia Serwatowska, Tom A P Nederstigt, Willie J G M Peijnenburg, Martina G Vijver
{"title":"Chronic toxicity of core-shell SiC/TiO<sub>2</sub> (nano)-particles to <i>Daphnia magna</i> under environmentally relevant food rations in the presence of humic acid.","authors":"Kornelia Serwatowska, Tom A P Nederstigt, Willie J G M Peijnenburg, Martina G Vijver","doi":"10.1080/17435390.2024.2321873","DOIUrl":"10.1080/17435390.2024.2321873","url":null,"abstract":"<p><p>To date, research on the toxicity and potential environmental impacts of nanomaterials has predominantly focused on relatively simple and single-component materials, whilst more complex nanomaterials are currently entering commercial stages. The current study aimed to assess the long-term and size-dependent (60 and 500 nm) toxicity of a novel core-shell nanostructure consisting of a SiC core and TiO<sub>2</sub> shell (SiC/TiO<sub>2</sub>, 5, 25, and 50 mg L<sup>-1</sup>) to the common model organism <i>Daphnia magna</i>. These novel core-shell nanostructures can be categorized as advanced materials. Experiments were conducted under environmentally realistic feeding rations and in the presence of a range of concentrations of humic acid (0.5, 2, 5, and 10 mg L<sup>-1</sup> TOC). The findings show that although effect concentrations of SiC/TiO<sub>2</sub> were several orders of magnitude lower than the current reported environmental concentrations of more abundantly used nanomaterials, humic acid can exacerbate the toxicity of SiC/TiO<sub>2</sub> by reducing aggregation and sedimentation rates. The EC<sub>50</sub> values (mean ± standard error) based on nominal SiC/TiO<sub>2</sub> concentrations for the 60 nm particles were 28.0 ± 11.5 mg L<sup>-1</sup> (TOC 0.5 mg L<sup>-1</sup>), 21.1 ± 3.7 mg L<sup>-1</sup> (TOC 2 mg L<sup>-1</sup>), 18.3 ± 5.4 mg L<sup>-1</sup> (TOC 5 mg L<sup>-1</sup>), and 17.8 ± 2.4 mg L<sup>-1</sup> (TOC 10 mg L<sup>-1</sup>). For the 500 nm particles, the EC50 values were 34.9 ± 16.5 mg L<sup>-1</sup> (TOC 0.5 mg L<sup>-1</sup>), 24.8 ± 5.6 mg L<sup>-1</sup> (TOC 2 mg L<sup>-1</sup>), 28.0 ± 10.0 mg L<sup>-1</sup> (TOC 5 mg L<sup>-1</sup>), and 23.2 ± 4.1 mg L<sup>-1</sup> (TOC 10 mg L<sup>-1</sup>). We argue that fate-driven phenomena are often neglected in effect assessments, whilst environmental factors such as the presence of humic acid may significantly influence the toxicity of nanomaterials.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"107-118"},"PeriodicalIF":3.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11073049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139990671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Food-grade titanium dioxide (E171) and zinc oxide nanoparticles induce mitochondrial permeability and cardiac damage after oral exposure in rats. 大鼠口服食品级二氧化钛(E171)和纳米氧化锌会诱发线粒体通透性和心脏损伤。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-03-04 DOI: 10.1080/17435390.2024.2323069
Francisco Correa Segura, Fernanda Isabel Macías Macías, Kimberly Abigaíl Velázquez Delgado, María Del Pilar Ramos-Godinez, Angélica Ruiz-Ramírez, Pedro Flores, Elizabeth Huerta-García, Rebeca López-Marure
{"title":"Food-grade titanium dioxide (E171) and zinc oxide nanoparticles induce mitochondrial permeability and cardiac damage after oral exposure in rats.","authors":"Francisco Correa Segura, Fernanda Isabel Macías Macías, Kimberly Abigaíl Velázquez Delgado, María Del Pilar Ramos-Godinez, Angélica Ruiz-Ramírez, Pedro Flores, Elizabeth Huerta-García, Rebeca López-Marure","doi":"10.1080/17435390.2024.2323069","DOIUrl":"10.1080/17435390.2024.2323069","url":null,"abstract":"<p><p>Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are found in diverse products for human use. E171 is used as whitening agent in food and cosmetics, and ZnO NPs in food packaging. Their potential multi-organ toxicity has raised concerns on their safety. Since mitochondrial dysfunction is a key aspect of cardio-pathologies, here, we evaluate the effect of chronic exposure to E171 and ZnO NPs in rats on cardiac mitochondria. Changes in cardiac electrophysiology and body weight were measured. E171 reduced body weight more than 10% after 5 weeks. Both E171 and ZnO NPs increased systolic blood pressure (SBP) from 110-120 to 120-140 mmHg after 45 days of treatment. Both NPs altered the mitochondrial permeability transition pore (mPTP), reducing calcium requirement for permeability by 60% and 93% in E171- and ZnO NPs-exposed rats, respectively. Treatments also affected conformational state of adenine nucleotide translocase (ANT). E171 reduced the binding of EMA to Cys 159 in 30% and ZnO NPs in 57%. Mitochondrial aconitase activity was reduced by roughly 50% with both NPs, indicating oxidative stress. Transmission electron microscopy (TEM) revealed changes in mitochondrial morphology including sarcomere discontinuity, edema, and hypertrophy in rats exposed to both NPs. In conclusion, chronic oral exposure to NPs induces functional and morphological damage in cardiac mitochondria, with ZnO NPs being more toxic than E171, possibly due to their dissociation in free Zn<sup>2+</sup> ion form. Therefore, chronic intake of these food additives could increase risk of cardiovascular disease.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"122-133"},"PeriodicalIF":5.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of carbon nanostructures in biomedicine: realities, difficulties, prospects. 碳纳米结构在生物医学中的应用:现实、困难和前景。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-03-15 DOI: 10.1080/17435390.2024.2327053
Konstantin N Semenov, Sergei V Ageev, Olegi N Kukaliia, Igor V Murin, Andrey V Petrov, Gleb O Iurev, Pavel A Andoskin, Gaiane G Panova, Oleg E Molchanov, Dmitrii N Maistrenko, Vladimir V Sharoyko
{"title":"Application of carbon nanostructures in biomedicine: realities, difficulties, prospects.","authors":"Konstantin N Semenov, Sergei V Ageev, Olegi N Kukaliia, Igor V Murin, Andrey V Petrov, Gleb O Iurev, Pavel A Andoskin, Gaiane G Panova, Oleg E Molchanov, Dmitrii N Maistrenko, Vladimir V Sharoyko","doi":"10.1080/17435390.2024.2327053","DOIUrl":"10.1080/17435390.2024.2327053","url":null,"abstract":"<p><p>The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems. We also show the creation of nanosized medicinal substances and diagnostic systems, and the production of new biomaterials. A separate section is devoted to the difficulties in studying carbon nanomaterials. The review is intended for a wide range of readers, as well as for experts in the field of nanotechnology and nanomedicine.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"181-213"},"PeriodicalIF":5.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano-graphene oxide particles induce inheritable anomalies through altered gene expressions involved in oocyte maturation. 纳米氧化石墨烯颗粒通过改变参与卵母细胞成熟的基因表达诱发遗传异常。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-03-07 DOI: 10.1080/17435390.2024.2325615
Sreelakshmi Krishnakumar, Raghunath Nair Malavika, Shantikumar V Nair, Deepthy Menon, Bindhu Paul-Prasanth
{"title":"Nano-graphene oxide particles induce inheritable anomalies through altered gene expressions involved in oocyte maturation.","authors":"Sreelakshmi Krishnakumar, Raghunath Nair Malavika, Shantikumar V Nair, Deepthy Menon, Bindhu Paul-Prasanth","doi":"10.1080/17435390.2024.2325615","DOIUrl":"10.1080/17435390.2024.2325615","url":null,"abstract":"<p><p>The inheritable impact of exposure to graphene oxide nanoparticles (GO NPs) on vertebrate germline during critical windows of gamete development remain undetermined to date. Here, we analyzed the transgenerational effects of exposure to nano-graphene oxide particles (nGO) synthesized in house with lateral dimensions 300-600 nm and surface charge of -36.8 mV on different developmental stages of germ cells (GCs): (1) during GCs undergoing early development and differentiation, and (2) during GCs undergoing gametogenesis and maturation in adulthood. Biocompatibility analyses in Japanese medaka embryos showed lethality above 1 µg/ml and also an aberrant increase in germ cell count of both males and females at doses below the lethal dose. However, no lethality or anomalies were evident in adults up to 45 µg/ml. Long term exposure of embryos and adults for 21 days resulted in reduced fecundity. This effect was transmitted to subsequent generations, F1 and F2. Importantly, the inheritable effects of nGO in adults were pronounced at a high dose of 10 µg/ml, while 1 µg/ml showed no impact on the germline indicating lower doses used in this study to be safe. Further, expressions of selected genes that adversely affected oocyte maturation were enhanced in F1 and F2 individuals. Interestingly, the inheritance patterns differed corresponding to the stage at which the fish received the exposure.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"160-180"},"PeriodicalIF":5.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of carbon nanotube levels in organic matter: an inter-laboratory comparison to determine best practice. 有机物质中碳纳米管含量的分析:确定最佳做法的实验室间比较。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-04-01 DOI: 10.1080/17435390.2024.2331683
Jérôme Devoy, Souhail Al-Abed, Benjamin Cerdan, Wan-Seob Cho, David Dubuc, Emmanuel Flahaut, Katia Grenier, Stéphane Grossmann, Mary Gulumian, Jiyoung Jeong, Boo Wook Kim, Adam Laycock, Jong Seong Lee, Rachel Smith, Mei Yang, Il Je Yu, Minfang Zhang, Frédéric Cosnier
{"title":"Analysis of carbon nanotube levels in organic matter: an inter-laboratory comparison to determine best practice.","authors":"Jérôme Devoy, Souhail Al-Abed, Benjamin Cerdan, Wan-Seob Cho, David Dubuc, Emmanuel Flahaut, Katia Grenier, Stéphane Grossmann, Mary Gulumian, Jiyoung Jeong, Boo Wook Kim, Adam Laycock, Jong Seong Lee, Rachel Smith, Mei Yang, Il Je Yu, Minfang Zhang, Frédéric Cosnier","doi":"10.1080/17435390.2024.2331683","DOIUrl":"10.1080/17435390.2024.2331683","url":null,"abstract":"<p><p>Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter. Among existing analytical methods, few have been fully and properly validated. To remedy this, we undertook an inter-laboratory comparison on samples of freeze-dried pig lung, ground and doped with CNTs. Eight laboratories were enrolled to analyze 3 types of CNTs at 2 concentration levels each in this organic matrix. Associated with the different analysis techniques used (specific to each laboratory), sample preparation may or may not have involved prior digestion of the matrix, depending on the analysis technique and the material being analyzed. Overall, even challenging, laboratories' ability to quantify CNT levels in organic matter is demonstrated. However, CNT quantification is often overestimated. Trueness analysis identified effective methods, but systematic errors persisted for some. Choosing the assigned value proved complex. Indirect analysis methods, despite added steps, outperform direct methods. The study emphasizes the need for reference materials, enhanced precision, and organized comparisons.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"214-228"},"PeriodicalIF":5.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140336175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in the EU classification of the health hazards associated with certain multiwall carbon nanotubes (MWCNTs): what about the other MWCNTs? 欧盟对与某些多壁碳纳米管(MWCNTs)相关的健康危害进行分类的最新进展:其他的多壁碳纳米管呢?
IF 3.6 3区 医学
Nanotoxicology Pub Date : 2024-03-01 Epub Date: 2024-02-27 DOI: 10.1080/17435390.2024.2321885
Henrik Wolff, Ulla Vogel
{"title":"Recent progress in the EU classification of the health hazards associated with certain multiwall carbon nanotubes (MWCNTs): what about the other MWCNTs?","authors":"Henrik Wolff, Ulla Vogel","doi":"10.1080/17435390.2024.2321885","DOIUrl":"10.1080/17435390.2024.2321885","url":null,"abstract":"","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"119-121"},"PeriodicalIF":3.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genoprotective role of pembrolizumab liposome in isolated lymphocytes from head and neck squamous cell carcinoma patients compared to those from healthy individuals in vitro. 与健康人的离体淋巴细胞相比,pembrolizumab 脂质体在头颈部鳞状细胞癌患者离体淋巴细胞中的基因保护作用。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-02-01 Epub Date: 2024-03-07 DOI: 10.1080/17435390.2024.2314464
Nagah Bobtina, Maysa Alhawamdeh, Khaled Habas, Mohamed Isreb, Bayan Aburas, Andrew T Harris, Mojgan Najafzadeh, Diana Anderson
{"title":"Genoprotective role of pembrolizumab liposome in isolated lymphocytes from head and neck squamous cell carcinoma patients compared to those from healthy individuals <i>in vitro</i>.","authors":"Nagah Bobtina, Maysa Alhawamdeh, Khaled Habas, Mohamed Isreb, Bayan Aburas, Andrew T Harris, Mojgan Najafzadeh, Diana Anderson","doi":"10.1080/17435390.2024.2314464","DOIUrl":"10.1080/17435390.2024.2314464","url":null,"abstract":"<p><p>Pembrolizumab has shown significant anticancer effects against various human cancers. The present study investigated the effects of pembrolizumab liposome and nano (naked) forms in treated lymphocytes from head and neck squamous cell carcinoma (HNSCC) patients compared to healthy individuals. The level of oxidative DNA damage induced by hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was also investigated. A concentration of 10 µg/ml of pembrolizumab liposome was used to treat the lymphocytes in the Comet and micronucleus assays based on the preliminary dosage optimization tests. To determine the cellular pathways involved in the protective role of pembrolizumab against H<sub>2</sub>O<sub>2</sub>, several proteins involved in apoptosis (P53, P21 and Bcl-2) were assessed. Pembrolizumab significantly reduced DNA damage and decreased the number of micronuclei in lymphocytes from HNSCC patients (p < 0.01) compared with healthy individuals. The 10 µg/ml of pembrolizumab liposome significantly reduced the oxidative stress induced by H<sub>2</sub>O<sub>2</sub> and was effective in healthy and HNSCC groups using the Comet and micronucleus assays (p < 0.001). To our knowledge, this is the first report of pembrolizumab in liposome and naked forms exhibiting a protective effect on DNA damage in the treatment of HNSCC patients.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"55-68"},"PeriodicalIF":5.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance. 金属基纳米材料人体生物监测中的暴露和影响生物标志物:在初级预防和健康监测中的应用。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-02-01 Epub Date: 2024-03-04 DOI: 10.1080/17435390.2023.2301692
Beatrice Bocca, Beatrice Battistini
{"title":"Biomarkers of exposure and effect in human biomonitoring of metal-based nanomaterials: their use in primary prevention and health surveillance.","authors":"Beatrice Bocca, Beatrice Battistini","doi":"10.1080/17435390.2023.2301692","DOIUrl":"10.1080/17435390.2023.2301692","url":null,"abstract":"<p><p>Metal-based nanomaterials (MNMs) have gained particular interest in nanotechnology industry. They are used in various industrial processes, in biomedical applications or to improve functional properties of several consumer products. The widescale use of MNMs in the global consumer market has resulted in increases in the likelihood of exposure and risks to human beings. Human exposure to MNMs and assessment of their potential health effects through the concomitant application of biomarkers of exposure and effect of the most commonly used MNMs were reviewed in this paper. In particular, interactions of MNMs with biological systems and the nanobiomonitoring as a prevention tool to detect the early damage caused by MNMs as well as related topics like the influence of some physicochemical features of MNMs and availability of analytical approaches for MNMs testing in human samples were summarized in this review. The studies collected and discussed seek to increase the current knowledge on the internal dose exposure and health effects of MNMs, highlighting the advantages in using biomarkers in primary prevention and health surveillance.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-35"},"PeriodicalIF":5.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140022215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats. 评估 Wistar 大鼠口服丁香酚纳米颗粒后的急性和亚急性毒性、药代动力学和生物分布。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-02-01 Epub Date: 2024-02-13 DOI: 10.1080/17435390.2024.2314483
Pramod G Nagaraju, Ashwini S, Pooja J Rao, Poornima Priyadarshini
{"title":"Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats.","authors":"Pramod G Nagaraju, Ashwini S, Pooja J Rao, Poornima Priyadarshini","doi":"10.1080/17435390.2024.2314483","DOIUrl":"10.1080/17435390.2024.2314483","url":null,"abstract":"<p><p>The present study aimed to assess the safety, toxicity, biodistribution, and pharmacokinetics of eugenol nanoparticles (EONs) following oral administration in Wistar rat models. In the acute toxicity study, the rats were given a fixed dose of 50, 300, and 2000 mg/kg body weight per group orally and screened for 2 weeks after administration. In the subacute study, three different doses (500, 1000, and 2000 mg/kg BW) of EON were administered for 28 days. The results indicated no significant differences in food and water consumption, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings, or histopathology compared to the control. Additionally, no significant changes were observed in the expression profiles of inflammatory cytokines such as IL-1, IL-6, and TNFα in the plasma, confirming the absence of systemic inflammation. Biodistribution analysis revealed rapid absorption of eugenol and improved bioavailability due to gradual and sustained release, leading to a maximum eugenol concentration of 15.05 μg/mL (Cmax) at approximately 8 h (Tmax) in the blood plasma. Thus, the study provides valuable insights into the utilization of EON for enhancing the stability, solubility, and sustained release of eugenol and highlights its promising safety profile <i>in vivo.</i></p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"87-105"},"PeriodicalIF":5.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139723351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration. 与质粒 DNA 复合物的阳离子固体脂质纳米颗粒(SLN)可增强前列腺癌细胞(PC-3)的迁移能力。
IF 5 3区 医学
Nanotoxicology Pub Date : 2024-02-01 DOI: 10.1080/17435390.2024.2307616
Fernanda Garcia-Fossa, Marcelo Bispo de Jesus
{"title":"Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration.","authors":"Fernanda Garcia-Fossa, Marcelo Bispo de Jesus","doi":"10.1080/17435390.2024.2307616","DOIUrl":"10.1080/17435390.2024.2307616","url":null,"abstract":"<p><p>Nanotechnology applications in biomedicine have increased in recent decades, primarily as therapeutic agents, drugs, and gene delivery systems. Among the nanoparticles used in medicine, we highlight cationic solid lipid nanoparticles (SLN). Given their nontoxic properties, much research has focused on the beneficial effects of SLN for drug or gene delivery system. However, little attention has been paid to the adverse impacts of SLN on the cellular environment, particularly their influence on intracellular signaling pathways. In this work, we investigate the effects triggered by cationic SLN on human prostate non-tumor cells (PNT1A) and tumor cells (PC-3). Our results demonstrate that cationic SLN enhances the migration of PC-3 prostate cancer cells but not PNT1A non-tumor prostate cells, an unexpected and unprecedented development. Furthermore, we observed that the enhanced cell migration velocity is a concentration-dependent and nanoparticle-dependent effect, and not related to any individual nanoparticle component. Moreover, cationic SLN increased vimentin expression (<i>p</i> < 0.05) but SLN did not affect Smad2 nuclear translocation. Meanwhile, EMT-related (epithelial-to-mesenchymal transition) proteins, such as ZEB1, underwent nuclear translocation when treated with cationic SLN, thereby affecting PC-3 cell motility through ZEB1 and vimentin modulation. From a therapeutic perspective, cationic SLN could potentially worsen a patient's condition if these results were reproduced <i>in vivo</i>. Understanding the <i>in vitro</i> molecular mechanisms triggered by nanomaterials and their implications for cell function is crucial for defining their safe and effective use.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"36-54"},"PeriodicalIF":5.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139651152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信