Evaluation of the biodistribution and preliminary safety profile of a novel brain-targeted manganese dioxide-based nanotheranostic system for Alzheimer's disease.
Lily Yi Li, Elliya Park, Chunsheng He, Azhar Z Abbasi, Jeffrey T Henderson, Paul E Fraser, Jack P Uetrecht, Andrew M Rauth, Xiao Yu Wu
{"title":"Evaluation of the biodistribution and preliminary safety profile of a novel brain-targeted manganese dioxide-based nanotheranostic system for Alzheimer's disease.","authors":"Lily Yi Li, Elliya Park, Chunsheng He, Azhar Z Abbasi, Jeffrey T Henderson, Paul E Fraser, Jack P Uetrecht, Andrew M Rauth, Xiao Yu Wu","doi":"10.1080/17435390.2024.2361687","DOIUrl":null,"url":null,"abstract":"<p><p>A novel brain-targeted and reactive oxygen species-activatable manganese dioxide containing nanoparticle system functionalized with anti-amyloid-β antibody (named aAβ-BTRA-NC) developed by our group has shown great promise as a highly selective magnetic resonance imaging (MRI) contrast agent for early detection and multitargeted disease-modifying treatment of Alzheimer's disease (AD). To further evaluate the suitability of the formulation for future clinical application, we investigated the safety, biodistribution, and pharmacokinetic profile of aAβ-BTRA-NC in a transgenic TgCRND8 mouse AD model, wild type (WT) littermate, and CD-1 mice. Dose-ascending studies demonstrated that aAβ-BTRA-NC was well-tolerated by the animals up to 300 μmol Mn/kg body weight [b.w.], 3 times the efficacious dose for early AD detection without apparent adverse effects; Histopathological, hematological, and biochemical analyses indicated that a single dose of aAβ-BTRA-NC did not cause any toxicity in major organs. Immunotoxicity data showed that aAβ-BTRA-NC was safer than commercially available gadolinium-based MRI contrast agents at an equivalent dose of 100 μmol/kg b.w. of metal ions. Intravenously administered aAβ-BTRA-NC was taken up by main organs with the order of liver, kidneys, intestines, spleen, followed by other organs, and cleared after one day to one week post injection. Pharmacokinetic analysis indicated that the plasma concentration profile of aAβ-BTRA-NC followed a 2-compartmental model with faster clearance in the AD mice than in the WT mice. The results suggest that aAβ-BTRA-NC exhibits a strong safety profile as a nanotheranostic agent which warrants more robust preclinical development for future clinical applications.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"315-334"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2361687","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel brain-targeted and reactive oxygen species-activatable manganese dioxide containing nanoparticle system functionalized with anti-amyloid-β antibody (named aAβ-BTRA-NC) developed by our group has shown great promise as a highly selective magnetic resonance imaging (MRI) contrast agent for early detection and multitargeted disease-modifying treatment of Alzheimer's disease (AD). To further evaluate the suitability of the formulation for future clinical application, we investigated the safety, biodistribution, and pharmacokinetic profile of aAβ-BTRA-NC in a transgenic TgCRND8 mouse AD model, wild type (WT) littermate, and CD-1 mice. Dose-ascending studies demonstrated that aAβ-BTRA-NC was well-tolerated by the animals up to 300 μmol Mn/kg body weight [b.w.], 3 times the efficacious dose for early AD detection without apparent adverse effects; Histopathological, hematological, and biochemical analyses indicated that a single dose of aAβ-BTRA-NC did not cause any toxicity in major organs. Immunotoxicity data showed that aAβ-BTRA-NC was safer than commercially available gadolinium-based MRI contrast agents at an equivalent dose of 100 μmol/kg b.w. of metal ions. Intravenously administered aAβ-BTRA-NC was taken up by main organs with the order of liver, kidneys, intestines, spleen, followed by other organs, and cleared after one day to one week post injection. Pharmacokinetic analysis indicated that the plasma concentration profile of aAβ-BTRA-NC followed a 2-compartmental model with faster clearance in the AD mice than in the WT mice. The results suggest that aAβ-BTRA-NC exhibits a strong safety profile as a nanotheranostic agent which warrants more robust preclinical development for future clinical applications.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.