塑料纳米颗粒对三种陆生物种的毒性机制:抗氧化系统失衡和神经毒性。

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY
Nanotoxicology Pub Date : 2024-05-01 Epub Date: 2024-05-29 DOI:10.1080/17435390.2024.2358781
Vera L Maria, Joana Santos, Marija Prodana, Diogo N Cardoso, Rui G Morgado, Mónica J B Amorim, Angela Barreto
{"title":"塑料纳米颗粒对三种陆生物种的毒性机制:抗氧化系统失衡和神经毒性。","authors":"Vera L Maria, Joana Santos, Marija Prodana, Diogo N Cardoso, Rui G Morgado, Mónica J B Amorim, Angela Barreto","doi":"10.1080/17435390.2024.2358781","DOIUrl":null,"url":null,"abstract":"<p><p>The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-<i>Enchytraeus crypticus</i> (Oligochaeta), <i>Folsomia candida</i> (Collembola) and <i>Porcellionides pruinosus</i> (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg<sup>-1</sup> PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in <i>F. candida</i> at 300 mg kg<sup>-1</sup> PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, <i>P. pruinosus</i> was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg<sup>-1</sup> PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in <i>F. candida</i> and <i>E. crypticus</i>, respectively. Significant AChE inhibitions were also found in <i>P. pruinosus</i> but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: <i>P. pruinosus</i> > <i>F. candida</i> ≅ <i>E. crypticus.</i> This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"299-313"},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity mechanisms of plastic nanoparticles in three terrestrial species: antioxidant system imbalance and neurotoxicity.\",\"authors\":\"Vera L Maria, Joana Santos, Marija Prodana, Diogo N Cardoso, Rui G Morgado, Mónica J B Amorim, Angela Barreto\",\"doi\":\"10.1080/17435390.2024.2358781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-<i>Enchytraeus crypticus</i> (Oligochaeta), <i>Folsomia candida</i> (Collembola) and <i>Porcellionides pruinosus</i> (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg<sup>-1</sup> PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in <i>F. candida</i> at 300 mg kg<sup>-1</sup> PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, <i>P. pruinosus</i> was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg<sup>-1</sup> PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in <i>F. candida</i> and <i>E. crypticus</i>, respectively. Significant AChE inhibitions were also found in <i>P. pruinosus</i> but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: <i>P. pruinosus</i> > <i>F. candida</i> ≅ <i>E. crypticus.</i> This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"299-313\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2358781\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2358781","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

塑料纳米粒子(PNPs)的有害影响是全世界关注的问题,但人们对其了解仍然有限,尤其是对土壤中的中生动物。本研究调查了 44 纳米聚苯乙烯 PNPs 对三种土壤模型的生化影响--隐翅虫(寡毛目)、念珠藻(鞘翅目)和 Porcellionides pruinosus(等足目)。在两种浓度(1.5 毫克/千克和 300 毫克/千克)的 PNPs 下,接触时间分别为 3 天、7 天和 14 天。结果表明,PNPs 对依赖谷胱甘肽的抗氧化酶谷胱甘肽 S 转移酶(GST)和神经递质乙酰胆碱酯酶(AChE)的活性都有影响。过氧化氢酶(CAT)的作用较小,主要表现在念珠菌在 300 毫克/千克 PNPs 的条件下(14 天后 CAT 和 GST 的反应),而脂质过氧化物(LPO)没有增加。即使具有抗氧化防御能力,普鲁诺索也是对脂质氧化损伤最敏感的物种(暴露于 300 毫克/千克 PNPs 7 天后,LPO 水平升高)。念珠菌和隐翅虫分别在接触两种浓度的 PNP 3 d 后,AChE 都受到了明显的抑制。在 P. pruinosus 中也发现了明显的 AChE 抑制作用,但时间较晚(7 d)。总体而言,PNPs 的毒性机制涉及抗氧化失衡,(主要)是该防御系统中与谷胱甘肽相关的新陈代谢。与 AChE 活性有关的神经毒性在所有物种中都很明显。对 PNPs 的敏感性各不相同:P. pruinosus > F. candida ≅ E. crypticus。这项关于 PNPs 对土壤无脊椎动物毒性的开创性研究强调了其与环境的相关性,揭示了生化反应的改变可能会损害生态作用和土壤生态系统的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toxicity mechanisms of plastic nanoparticles in three terrestrial species: antioxidant system imbalance and neurotoxicity.

The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-Enchytraeus crypticus (Oligochaeta), Folsomia candida (Collembola) and Porcellionides pruinosus (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg-1 PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in F. candida at 300 mg kg-1 PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, P. pruinosus was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg-1 PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in F. candida and E. crypticus, respectively. Significant AChE inhibitions were also found in P. pruinosus but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: P. pruinosus > F. candidaE. crypticus. This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信