{"title":"Multiplex PCR for Early Generation Identification of Tomato Segregants Carrying Ty-2, Ty-3 and Ph-3 Resistance Alleles Against Leaf Curl and Late Blight Diseases.","authors":"Vijaya Lakshmi, Awnish Kumar, Surabhi Sangam, Shirin Akhtar, Tirthartha Chattopadhyay","doi":"10.1007/s12033-024-01220-8","DOIUrl":"10.1007/s12033-024-01220-8","url":null,"abstract":"<p><p>Deployment of different natural disease resistance alleles is the most sustainable and eco-friendly way for multiple disease management in tomato. Diagnostic molecular markers are indispensible in this effort as they offer early generation identification of resistance alleles in an environment-independent manner. Moreover, optimized multiplex polymerase chain reaction (PCR) for detecting different disease resistance alleles in a single reaction can speed-up the selection process with cost and labour-effectiveness. Here we report the optimized multiplex detection and stacking of leaf curl disease resistance alleles Ty-2 and Ty-3 along with late blight disease resistance allele Ph-3 in tomato genotypes and F<sub>2</sub> segregants. The triplex assay could be replaced by a duplex assay (for Ty-2 and Ty-3 resistance alleles) followed by analysis at Ph-3 locus to achieve further cost-effectiveness. We identified two plants in F<sub>2</sub> populations derived from the Arka Samrat (F<sub>1</sub>) x Kashi Chayan combination to carry the Ty-2, Ty-3 and Ph-3 resistance alleles in homozygous condition. Early generation genotyping also allowed us to identify a few morphologically better segregants, where further marker assisted selection (MAS) should identify superior multiple disease resistant lines. Thus we advocate the utility of multiplex PCR in MAS to address multiple disease resistance breeding in tomato.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2576-2586"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-06-10DOI: 10.1007/s12033-024-01207-5
Yue Ding, Zheng Ye, Bo Ding, Songwei Feng, Yang Zhang, Yang Shen
{"title":"Identification of CXCL13 as a Promising Biomarker for Immune Checkpoint Blockade Therapy and PARP Inhibitor Therapy in Ovarian Cancer.","authors":"Yue Ding, Zheng Ye, Bo Ding, Songwei Feng, Yang Zhang, Yang Shen","doi":"10.1007/s12033-024-01207-5","DOIUrl":"10.1007/s12033-024-01207-5","url":null,"abstract":"<p><p>Ovarian cancer has poor response rates to immune checkpoint blockade (ICB) therapy, despite the use of genomic sequencing to identify molecular targets. Homologous recombination deficiency (HRD) is a conventional indicator of genomic instability (GI) and has been used as a marker for targeted therapies. Indicators reflecting HRD status have shown potential in predicting the efficacy of ICB treatment. Public databases, including TCGA, ICGC, and GEO, were used to obtain data. HRD scores, neoantigen load, and TMB were obtained from the TCGA cohort. Candidate biomarkers were validated in multiple databases, such as the Imvigor210 immunotherapy cohort and the open-source single-cell sequencing database. Immunohistochemistry was performed to further validate the results in independent cohorts. CXCL10, CXCL11, and CXCL13 were found to be significantly upregulated in HRD tumors and exhibited prognostic value. A comprehensive analysis of the tumor immune microenvironment (TIME) revealed that CXCL13 expression positively correlated with neoantigen load and immune cell infiltration. In addition, single-cell sequencing data and clinical trial results supported the utility of CXCL13 as a biomarker for ICB therapy. Not only does CXCL13 serve as a biomarker reflecting HRD status, but it also introduces a potentially novel perspective on prognostic biomarkers for ICB in ovarian cancer.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2428-2442"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pan-Cancer Analysis and Experimental Validation of CEND1 as a Prognostic and Immune Infiltration-Associated Biomarker for Gliomas.","authors":"Jinyang Ma, Bojuan Lang, Lei Wang, Youdong Zhou, Changtao Fu, Chunlei Tian, Lixin Xue","doi":"10.1007/s12033-024-01197-4","DOIUrl":"10.1007/s12033-024-01197-4","url":null,"abstract":"<p><p>Cell cycle exit and neuronal differentiation 1 (CEND1), highly expressed in the brain, is a specific transmembrane protein which plays a tumor suppressor role. This study is performed to investigate the role of CEND1 in various cancers through pan-cancer analysis, and further investigate its functions in gliomas by cell experiments. The expression and subcellular localization of CEND1 in different cancer types were analyzed utilizing the data from the GEPIA, UCSC, UALCAN and HPA databases. Relationships of CEND1 expression with prognosis, immunomodulation-related genes, immune checkpoint genes, microsatellite instability (MSI), tumor mutation burden (TMB) and RNA modifications were analyzed based on the TCGA database. The ESTIMATE algorithm was utilized to evaluate tumors' StromalScore, Immune Score, and ESTIMATES Score. The cBioPortal database was employed to analyze the categories and frequencies of CEND1 gene alterations. Biological functions and co-expression patterns of CEND1 in gliomas were explored using the LinkedOmics database, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. The interactions between CEND1 and drugs were explored employing the Comparative Toxicogenomics Database and molecular docking technology. Cell experiments were conducted to analyze triptonide's effects on glioma cells through CCK-8, flow cytometry and qRT-PCR. CEND1 was lowly expressed in gliomas, and high CEND1 expression was correlated to better overall survival of glioma patients (HR = 0.65, P = 0.02). Deep deletion was the main type of hereditary change of CEND1 mutation. CEND1 expression was markedly associated with immune infiltration, TMB, MSI, and RNA modification in various tumors (r > 0.3, P < 0.05). CEND1 co-expressed genes in gliomas were markedly correlated with immune responses and cell cycle (FDR < 0.05). Triptonide could bind well to CEND1 (-5.0 kcal/mol), and triptonide could facilitate CEND1 expression in glioma cells and cell apoptosis, and block the cell cycle progression (P < 0.05). CEND1 serves as a potential biomarker for pan-cancer. Particularly in gliomas, CEND1 is a key regulator of cell apoptosis and cell cycle, and a potential target for glioma treatment.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2286-2304"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-06-21DOI: 10.1007/s12033-024-01216-4
Melvina Krishnan, Hong Yun Tham, Wan Ahmad Kamil Wan Nur Ismah, Khatijah Yusoff, Adelene Ai-Lian Song
{"title":"Effect of Domain Manipulation in the Staphylococcal Phage Endolysin, Endo88, on Lytic Efficiency and Host Range.","authors":"Melvina Krishnan, Hong Yun Tham, Wan Ahmad Kamil Wan Nur Ismah, Khatijah Yusoff, Adelene Ai-Lian Song","doi":"10.1007/s12033-024-01216-4","DOIUrl":"10.1007/s12033-024-01216-4","url":null,"abstract":"<p><p>The bacteriophage endolysin Endo88 targeting Staphylococcus aureus PS88 consists of the CHAP and Amidase-2 enzymatic domains and one SH3b targeting domain. In this study, the effects of domain manipulations on Endo88 functionality were determined. Three truncated mutants of Endo88 (CHAP, CHAPAmidase and CHAPSH3) and two chimeras (CHAPAmidase-Cpl7Cpl7 and Endo88-Cpl7Cpl7) containing the Cpl7Cpl7 targeting domains of the streptococcal LambdaSa2-ECC endolysin were cloned in E. coli (pET28a), expressed, and then purified. Lytic efficiency and host range were assessed through plate lysis assays and turbidity reduction assays. Endo88 required all domains for maximum functionality, with activity detected against Staphylococcus aureus PS88 (host strain), S. aureus Mu50 (VISA), CoNS (Staphylococcus epidermidis and Staphylococcus hominis), and Enterococcus faecalis. The truncated constructs maintained the original host range but with reduced lytic efficiency. The Amidase-2 and SH3b domains are interdependent in maximizing functionality. The chimera constructs demonstrated reduced functionality, without activity against Streptococcus agalactiae in both assays. This study provides insights into domain function in a staphylococcal endolysin, which could enable the development of prospective engineered antimicrobials against multidrug-resistant pathogens.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2536-2544"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-06-04DOI: 10.1007/s12033-024-01200-y
Antônio Mateus Gomes Pereira, Victor Moreira de Oliveira, Matheus Nunes da Rocha, Caio Henrique Alexandre Roberto, Francisco Ferdinando Mesquita Cajazeiras, Jesyka Macêdo Guedes, Márcia Machado Marinho, Alexandre Magno Rodrigues Teixeira, Emmanuel Silva Marinho, Pedro de Lima-Neto, Hélcio Silva Dos Santos
{"title":"Structure and Ligand Based Virtual Screening and MPO Topological Analysis of Triazolo Thiadiazepine-fused Coumarin Derivatives as Anti-Parkinson Drug Candidates.","authors":"Antônio Mateus Gomes Pereira, Victor Moreira de Oliveira, Matheus Nunes da Rocha, Caio Henrique Alexandre Roberto, Francisco Ferdinando Mesquita Cajazeiras, Jesyka Macêdo Guedes, Márcia Machado Marinho, Alexandre Magno Rodrigues Teixeira, Emmanuel Silva Marinho, Pedro de Lima-Neto, Hélcio Silva Dos Santos","doi":"10.1007/s12033-024-01200-y","DOIUrl":"10.1007/s12033-024-01200-y","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a debilitating condition that can cause locomotor problems in affected patients, such as tremors and body rigidity. PD therapy often includes the use of monoamine oxidase B (MAOB) inhibitors, particularly phenylhalogen compounds and coumarin-based semi-synthetic compounds. The objective of this study was to analyze the structural, pharmacokinetic, and pharmacodynamic profile of a series of Triazolo Thiadiazepine-fused Coumarin Derivatives (TDCDs) against MAOB, in comparison with the inhibitor safinamide. To achieve this goal, we utilized structure-based virtual screening techniques, including target prediction and absorption, distribution, metabolism, and excretion (ADME) prediction based on multi-parameter optimization (MPO) topological analysis, as well as ligand-based virtual screening techniques, such as docking and molecular dynamics. The findings indicate that the TDCDs exhibit structural similarity to other bioactive compounds containing coumarin and MAOB-binding azoles, which are present in the ChEMBL database. The topological analyses suggest that TDCD3 has the best ADME profile, particularly due to the alignment between low lipophilicity and high polarity. The coumarin and triazole portions make a strong contribution to this profile, resulting in a permeability with P<sub>app</sub> estimated at 2.15 × 10<sup>-5</sup> cm/s, indicating high cell viability. The substance is predicted to be metabolically stable. It is important to note that this is an objective evaluation based on the available data. Molecular docking simulations showed that the ligand has an affinity energy of - 8.075 kcal/mol with MAOB and interacts with biological substrate residues such as Pro102 and Phe103. The results suggest that the compound has a safe profile in relation to the MAOB model, making it a promising active ingredient for the treatment of PD.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2339-2356"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-06-17DOI: 10.1007/s12033-024-01213-7
Vid Mlakar, Isabelle Dupanloup, Yvonne Gloor, Marc Ansari
{"title":"Haplotype Inference Using Long-Read Nanopore Sequencing: Application to GSTA1 Promoter.","authors":"Vid Mlakar, Isabelle Dupanloup, Yvonne Gloor, Marc Ansari","doi":"10.1007/s12033-024-01213-7","DOIUrl":"10.1007/s12033-024-01213-7","url":null,"abstract":"<p><p>Recovering true haplotypes can have important clinical consequences. The laboratory process is difficult and is, therefore, most often done through inference. In this paper, we show that when using the Oxford nanopore sequencing technology, we could recover the true haplotypes of the GSTA1 promoter region. Eight LCL cell lines with potentially ambiguous haplotypes were used to characterize the efficacy of Oxford nanopore sequencing to phase the correct GSTA1 promoter haplotypes. The results were compared to Sanger sequencing and inferred haplotypes in the 1000 genomes project. The average read length was 813 bp out of a total PCR length of 1336 bp. The best coverage of sequencing was in the middle of the PCR product and decreased to 50% at the PCR ends. SNPs separated by less than 200 bp showed > 90% of correct haplotypes, while at the distance of 1089 bp, this proportion still exceeded 58%. The number of cycles influences the generation of hybrid haplotypes but not extension or annealing time. The results demonstrate that this long sequencing reads methodology, can accurately determine the haplotypes without the need for inference. The technology proved to be robust but the success of phasing nonetheless depends on the distances and frequencies of SNPs.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2512-2519"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-08-07DOI: 10.1007/s12033-024-01215-5
Rui Chen, Jie Ren, Yifei Wang, Xing Zhang, Yifan Jia, Chang Liu, Kai Qu
{"title":"A Comprehensive Analysis Exploring the Impact of an Immunogenic Cell Death-Related Panel for Ovarian Cancer.","authors":"Rui Chen, Jie Ren, Yifei Wang, Xing Zhang, Yifan Jia, Chang Liu, Kai Qu","doi":"10.1007/s12033-024-01215-5","DOIUrl":"10.1007/s12033-024-01215-5","url":null,"abstract":"<p><p>Ovarian cancer (OV) is a malignant tumor that ranks first among gynecological cancers, thus posing a significant threat to women's health. Immunogenic cell death (ICD) can regulate cell death by activating the adaptive immune system. Here, we aimed to comprehensively characterize the features of ICD-associated genes in ovarian cancer, and to investigate their prognostic value and role in the response to immunotherapy. After analyzing datasets from The Cancer Genome Atlas, we utilized weighted gene coexpression network analysis to screen for hub genes strongly correlated with ICD genes in OV, which was subsequently validated with OV samples from the Gene Expression Omnibus (GEO) database. A prognostic risk model was then constructed after combining univariate, multivariate Cox regression and LASSO regression analysis to recognize nine ICD-associated molecules. Next, we stratified all OV patients into two subgroups according to the median value. The multivariate Cox regression analysis showed that the risk model could predict OV patient survival with good accuracy. The same results were also found in the validation set from GEO. We then compared the degree of immune cell infiltration in the tumor microenvironment between the two subgroups of OV patients, and revealed that the high-risk subtype had a higher degree of immune infiltration than the low-risk subtype. Additionally, in contrast to patients in the high-risk subgroup, those in the low-risk subgroup were more susceptible to chemotherapy. In conclusion, our research offers an independent and validated model concerning ICD-related molecules to estimate the prognosis, degree of immune infiltration, and chemotherapy susceptibility in patients with OV.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2520-2535"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-05-30DOI: 10.1007/s12033-024-01194-7
Zhiqiang Gao, Jing Yang
{"title":"GNB4 Silencing Promotes Pyroptosis to Inhibit the Development of Glioma by Activating cGAS-STING Pathway.","authors":"Zhiqiang Gao, Jing Yang","doi":"10.1007/s12033-024-01194-7","DOIUrl":"10.1007/s12033-024-01194-7","url":null,"abstract":"<p><p>The induction of immunogenic cell death is a promising therapeutic option for gliomas. Pyroptosis is a type of programmed immunogenic cell death and its role in gliomas remains unclear. Differentially expressed genes (DEGs) were obtained from GSE4290 and GSE31262 datasets. Hub genes were screened from protein-protein interaction networks and assessed using principal component analysis and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the mRNA expression of hub genes. Pyroptosis and pathway-related proteins were assessed using western blotting. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay. The effect of guanine nucleotide-binding protein-4 (GNB4) on proliferation, migration, and invasion was evaluated using a cell viability test kit and wound-healing and transwell assays. In total, 202 DEGs were identified. Among them, F2R, GNG4, GNG3, PRKCB, and GNB4 were identified as hub genes in gliomas after comprehensive bioinformatics analysis. GNB4 was significantly upregulated in glioma cells compared to normal brain glial cells. Silencing GNB4 significantly inhibited proliferation, invasion, and migration of glioma cells. The expression of pyroptosis-related proteins increased after GNB4 silencing, with elevated levels of inflammatory factors. Pyroptosis inhibitors reversed the inhibitory effects of GNB4 silencing on cell proliferation, migration, and invasion. Additionally, GNB4 silencing activated the cGAS-STING pathway. Treatment with a cGAS-STING pathway inhibitor reversed the inhibition of proliferation, migration, and invasion while downregulating the expression of pyroptosis-related proteins. Silencing GNB4 promotes pyroptosis and thus inhibits the proliferation, migration, and invasion of glioma cells by activating the cGAS-STING pathway, which is a promising biomarker and therapeutic target for glioma.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2262-2276"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-06-01Epub Date: 2024-05-22DOI: 10.1007/s12033-024-01196-5
Bing Li, Shu Tan, Xi Yu, Yan Wang
{"title":"Omaveloxolone Prevents Polystyrene Microplastic-Induced Ovarian Granulosa Cell Apoptosis via the Keap1/Nrf2/HO-1 Pathway in Rats.","authors":"Bing Li, Shu Tan, Xi Yu, Yan Wang","doi":"10.1007/s12033-024-01196-5","DOIUrl":"10.1007/s12033-024-01196-5","url":null,"abstract":"<p><p>Microplastics (MPs) are persistent environmental pollutants that enter the circulatory system and subsequently reduce sperm quantity and quality. However, the influence of polystyrene MPs (PS-MPs) on the ovary and relevant mechanisms remain elusive. Herein, we aimed to examine the impact of PS-MPs on oxidative disorders in ovarian tissues and elucidate the underlying mechanisms. Healthy female rats were treated with different concentrations of 0.5 µm PS-MPs (diluted in deionized H<sub>2</sub>O) for 90 days. Upon examination of hematoxylin-eosin-stained ovarian tissue sections, the number of growing follicles was reduced in PS-MP-treated rats when compared with that in control rats. Enzyme-linked immunosorbent assays revealed that PS-MP exposure markedly reduced anti-Müllerian hormone (AMH) levels. Treatment with PS-MPs downregulated superoxide dismutase, glutathione, and catalase activities in ovarian tissues while upregulating malondialdehyde levels. Furthermore, exposure to PS-MP blocked the Keap1/Nrf2/HO-1 signal transduction pathway. PS-MPs also triggered apoptosis in the ovarian tissue, as evidenced by increased TUNEL staining and expression levels of cleaved caspase-9, Bax, and Bcl-2. To reactivate the Keap1/Nrf2/HO-1 pathway, rats were co-administered PS-MPs and omaveloxolone (Oma), an Nrf2 activator, for 1 week. We found that Oma could counteract the PS-MP-mediated effects on oxidative disorder, apoptosis, AMH production, and follicle number in rat ovarian tissues. To develop an in vitro model, granulosa cells (GCs) were treated with 10 μM H<sub>2</sub>O<sub>2</sub> for 12 h to induce oxidative stress. H<sub>2</sub>O<sub>2</sub>-stimulated GCs exhibited attenuated cell growth and upregulated apoptosis and oxidative stress. Oma administration could ameliorate the H<sub>2</sub>O<sub>2</sub>-induced effects in terms of regulating cell viability, apoptosis, and oxidative stress in GCs. In summary, PS-MPs could induce apoptosis and oxidative stress via the Keap1/Nrf2/HO-1 signaling pathway in both rats and GCs.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2277-2285"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SIRT2 as a Potential Biomarker in Lung Adenocarcinoma: Implications for Immune Infiltration.","authors":"Guining Zhang, Shuyu Lu, Zhiling Ren, Lijuan Wei, Chunxi Chen, Pinyue Tao, Xiao Pan","doi":"10.1007/s12033-024-01198-3","DOIUrl":"10.1007/s12033-024-01198-3","url":null,"abstract":"<p><p>SIRT2 play important roles in cell cycle and cellular metabolism in the development of non-small cell lung cancer (NSCLC), and SIRT2 exhibits its therapeutic effect on NSCLC tumors with high expression of SIRT2. Nevertheless, the clinical relevance of SIRT2 in lung adenocarcinoma (LUAD), particularly its impact on tumor growth and prognostic implications, remains obscure. This investigation entailed a comprehensive analysis of SIRT2 mRNA and protein expression levels in diverse tumor and corresponding healthy tissues, utilizing databases such as TIMER 2.0, UALCAN, and HPA. Prognostic correlations of SIRT2 expression in LUAD patients, stratified by distinct clinicopathological characteristics, were evaluated using the KM Plotter database. Additionally, the TCGA and TIMER 2.0 databases were employed to assess the relationship between SIRT2 and immune infiltration, as well as to calculate immunity, stromal, and estimation scores, thus elucidating the role of SIRT2 in modulating tumor immunotherapy responses. Furthermore, Gene Set Enrichment Analysis (GSEA) was utilized to elucidate SIRT2's biological functions in pan-cancer cells. Our findings revealed a marked reduction in both mRNA and protein levels of SIRT2 in LUAD tumors relative to healthy tissue. Survival analysis indicated that diminished SIRT2 expression correlates with adverse prognostic outcomes in LUAD. Furthermore, SIRT2 expression demonstrated a significant association with various clinicopathologic attributes of LUAD patients, influencing survival outcomes across different clinicopathologic states. Functional enrichment analyses highlighted SIRT2's involvement in cell cycle regulation and immune response. Notably, SIRT2 exhibited a positive correlation with immune cell infiltration, including natural killer (NK) cells, macrophages, and dendritic cells (DCs). In summary, SIRT2 was a potential prognostic biomarker for LUAD and and a new immunotherapy target.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2305-2318"},"PeriodicalIF":2.4,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}