Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-11-04DOI: 10.1007/s12033-023-00943-4
Dengyuan Li, Jun Wang, Jie Zeng, Shujin Li, Danxiong Sun, Lin Qiu, Zhenming Huang, Ku Wang, Gaohui Fu, Deming Gou, Yunhui Zhang
{"title":"Identification and Validation of Genes Exhibiting Dynamic Alterations in Response to Bleomycin-Induced Pulmonary Fibrosis.","authors":"Dengyuan Li, Jun Wang, Jie Zeng, Shujin Li, Danxiong Sun, Lin Qiu, Zhenming Huang, Ku Wang, Gaohui Fu, Deming Gou, Yunhui Zhang","doi":"10.1007/s12033-023-00943-4","DOIUrl":"10.1007/s12033-023-00943-4","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) carries a high mortality rate and has a poor prognosis. The pathogenesis of pulmonary fibrosis (PF) is highly related to dysregulation of multiple RNAs. This study aims to identify and validate dysregulated RNAs that exhibited dynamic alterations in response to bleomycin (BLM)-induced PF. The results will provide therapeutic targets for patients suffering from IPF. Whole transcriptomic profiles of BLM-induced PF were obtained through high-throughput RNA sequencing. miRNA profiling was downloaded from GSE45789 database in the Gene Expression Omnibus (GEO). We identified the differentially expressed RNAs (DERNAs) that exhibited dynamic alterations in response to BLM-induced PF. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were conducted to discovery regulatory processes of PF. Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and co-expression analysis were performed to identify key genes and pathogenic pattern during the progression of PF. MiRanda, miRcode, and TargetScan were utilized to predict target relationships in the potential competing endogenous RNA (ceRNA) network. The results were verified by qRT-PCR analysis. In the context of BLM-induced PF, this study identified a total of 167 differentially expressed messenger RNAs (DEmRNAs), 115 differentially expressed long non-coding RNAs (DElncRNAs), 45 differentially expressed circular RNAs (DEcircRNAs), and 87 differentially expressed microRNAs (DEmiRNAs). These RNA molecules showed dynamic alterations in response to BLM-induced PF. These DEmRNAs exhibited a predominant association with the biological processes pertaining to the organization of extracellular matrix. A regulatory network was built in PF, encompassing 31 DEmRNAs, 18 DE lncRNAs, 13 DEcircRNAs, and 13 DEmiRNAs. Several DERNA molecules were subjected to validate using additional BLM-induced PF model. The outcomes of this validation process shown a strong correlation with the results obtained from RNA sequencing analysis. The GSE213001 dataset was utilized to validate the expression levels and diagnostic efficacy of four specific hub mRNAs (CCDC80, CLU, COL5A1, and COL6A3) in individuals diagnosed with PF. In this study, we identified and validated several RNA molecules that exhibited dynamic alternations in response to BLM-induced PF. These dysregulated RNAs participated in the pathogenesis of PF and can be used as therapeutic targets for early-stage IPF. Although more work must be done to confirm the results, our study may provide directions for future studies.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3323-3335"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"THSD7A as a Promising Biomarker for Membranous Nephrosis.","authors":"Shuiqing Jiang, Dehua Jiang, Zhiyuan Lian, Xiaohong Huang, Ting Li, Yinan Zhang","doi":"10.1007/s12033-023-00934-5","DOIUrl":"10.1007/s12033-023-00934-5","url":null,"abstract":"<p><p>Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogeneous outcomes with approximately 30% of cases progressing to end-stage renal disease. Traditionally, the standard approach of diagnosing MN involves performing a kidney biopsy. Nevertheless, kidney biopsy is an invasive procedure that poses risks for the patient including bleeding and pain, and bears greater costs for the health system. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. At present, serum anti-PLA2R antibody detection and glomerular PLA2R antigen staining have been used for clinical diagnosis and prognosis, but the related detection of THSD7A has not been widely used in clinical practice. Here, we summarized the emerging knowledge regarding the roles THSD7A plays in MN and its clinical implications as diagnostic, prognostic, and therapeutic response as well as Methods for detecting serum THSD7A antibodies.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3117-3135"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54230133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-11-01DOI: 10.1007/s12033-023-00926-5
Sallahuddin Panhwar, Hareef Ahmed Keerio, Hasan Ilhan, Ismail Hakkı Boyacı, Ugur Tamer
{"title":"Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection.","authors":"Sallahuddin Panhwar, Hareef Ahmed Keerio, Hasan Ilhan, Ismail Hakkı Boyacı, Ugur Tamer","doi":"10.1007/s12033-023-00926-5","DOIUrl":"10.1007/s12033-023-00926-5","url":null,"abstract":"<p><p>Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3059-3076"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71425079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonsense-Mediated mRNA Decay: Mechanistic Insights and Physiological Significance.","authors":"Ipsita Patro, Annapurna Sahoo, Bilash Ranjan Nayak, Rutupurna Das, Sanjoy Majumder, Gagan Kumar Panigrahi","doi":"10.1007/s12033-023-00927-4","DOIUrl":"10.1007/s12033-023-00927-4","url":null,"abstract":"<p><p>Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation. It essentially ensures recognition and removal of aberrant transcripts. Therefore, the NMD protects the cellular system by restricting the synthesis of truncated proteins, potentially by eliminating the faulty mRNAs. NMD is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation as well. Primarily, the NMD machinery scans and differentiates the aberrant and non-aberrant transcripts. A myriad of cellular dysfunctions arise due to production of truncated proteins, so the NMD core proteins, the up-frameshift factors (UPFs) recognizes the faulty mRNAs and further recruits factors resulting in the mRNA degradation. NMD exhibits astounding variability in its ability in regulating cellular mechanisms including both pathological and physiological events. But, the detailed underlying molecular mechanisms in NMD remains blurred and require extensive investigation to gain insights on cellular homeostasis. The complexity in understanding of NMD pathway arises due to the involvement of numerous proteins, molecular interactions and their functioning in different steps of this process. Moreover methods such as alternative splicing generates numerous isoforms of mRNA, so it makes difficulties in understanding the impact of alternative splicing on the efficiency of NMD functioning. Role of NMD in cancer development is very complex. Studies have shown that in some cases cancer cells use NMD pathway as a tool to exploit the NMD mechanism to maintain tumor microenvironment. A greater level of understanding about the intricate mechanism of how tumor used NMD pathway for their benefits, a strategy can be developed for targeting and inhibiting NMD factors involved in pro-tumor activity. There are very little amount of information available about the NMD pathway, how it discriminate mRNAs that are targeted by NMD from those that are not. This review highlights our current understanding of NMD, specifically the regulatory mechanisms and attempts to outline less explored questions that warrant further investigations. Taken as a whole, a detailed molecular understanding of the NMD mechanism could lead to wide-ranging applications for improving cellular homeostasis and paving out strategies in combating pathological disorders leaping forward toward achieving United Nations sustainable development goals (SDG 3: Good health and well-being).</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3077-3091"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-10-25DOI: 10.1007/s12033-023-00919-4
Mohammad Sharifur Rahman, Mohammad Salim Hossain
{"title":"Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend.","authors":"Mohammad Sharifur Rahman, Mohammad Salim Hossain","doi":"10.1007/s12033-023-00919-4","DOIUrl":"10.1007/s12033-023-00919-4","url":null,"abstract":"<p><p>SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3025-3041"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Analysis of ADAMTS Gene Family in Renal Clear Cell Carcinoma and ADAMTS10 Research Combining Magnetic Resonance Imaging.","authors":"Haifeng Hu, Ying Wang, Ying Liu, Chunyu Zhang, Guoan Li, Tianyu Zhang, Bo Dong","doi":"10.1007/s12033-023-00915-8","DOIUrl":"10.1007/s12033-023-00915-8","url":null,"abstract":"<p><p>Clear cell renal carcinoma (ccRCC) is one of the cancers that posed a severe threat to human life on a global scale. The ADAMTS family has been proven to be involved in a number of tumor types, although it is yet unknown how they relate to ccRCC. The mRNA expression matrix and other clinically relevant information of 607 ccRCC were sourced from TCGA database. The role of ADAMTS family genes in ccRCC was determined by differential gene expression analysis and gene set enrichment analysis (GSEA). Employing stage grading, gene mutation, and survival analysis, the genes most linked to the prognosis of ccRCC were identified. The influence of genes on the pathway was determined by Kyoto Encyclopedia of Genes and Genes (KEGG) analysis. Following that, the gene's impact on ccRCC was verified by qRT-PCR, WB, MTT, Transwell detection, and a wound healing assay. Bioinformatics analysis showed that ADAMTS10 was overexpressed in cancerous tissues of people with ccRCC and its expression increased with tumor grade. Mutation analysis showed that the main cause of mutation in the ADAMTS family gene was amplification. The prognosis and survival of the ADAMTS10 elevated expression group were lower than those of the poorly expressed group, as demonstrated by a survival analysis. On the basis of the findings of MRI, we examined 60 clinical patients and collected their cancer along with the surrounding tissues. The results of qPCR detection showed that the expression of ADAMTS10 was considerably higher in cancerous regions of 60 clinical users than it was in the tissues nearby. Inhibiting ADAMTS10 development prevents cancer cells from proliferating, invading, and migrating. The KEGG analysis links ADAMTS10 to the NF-κB signal pathway. WB experiment confirmed that inhibiting ADAMTS10 expression can inhibit the activation of the NF-κB signal pathway. ADAMTS10 may be a promising prognostic marker for ccRCC that can be employed independently.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3136-3149"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49679848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-11-11DOI: 10.1007/s12033-023-00929-2
Mustafa Özgür Cingiz
{"title":"k- Strong Inference Algorithm: A Hybrid Information Theory Based Gene Network Inference Algorithm.","authors":"Mustafa Özgür Cingiz","doi":"10.1007/s12033-023-00929-2","DOIUrl":"10.1007/s12033-023-00929-2","url":null,"abstract":"<p><p>Gene networks allow researchers to understand the underlying mechanisms between diseases and genes while reducing the need for wet lab experiments. Numerous gene network inference (GNI) algorithms have been presented in the literature to infer accurate gene networks. We proposed a hybrid GNI algorithm, k-Strong Inference Algorithm (ksia), to infer more reliable and robust gene networks from omics datasets. To increase reliability, ksia integrates Pearson correlation coefficient (PCC) and Spearman rank correlation coefficient (SCC) scores to determine mutual information scores between molecules to increase diversity of relation predictions. To infer a more robust gene network, ksia applies three different elimination steps to remove redundant and spurious relations between genes. The performance of ksia was evaluated on microbe microarrays database in the overlap analysis with other GNI algorithms, namely ARACNE, C3NET, CLR, and MRNET. Ksia inferred less number of relations due to its strict elimination steps. However, ksia generally performed better on Escherichia coli (E.coli) and Saccharomyces cerevisiae (yeast) gene expression datasets due to F- measure and precision values. The integration of association estimator scores and three elimination stages slightly increases the performance of ksia based gene networks. Users can access ksia R package and user manual of package via https://github.com/ozgurcingiz/ksia .</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3213-3225"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89718946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-10-30DOI: 10.1007/s12033-023-00928-3
Yani Zhou, Dan Liu, Huirong Li
{"title":"FGL1 Promotes Tumor Immune Escape in Stomach Adenocarcinoma via the Notch Signaling Pathway.","authors":"Yani Zhou, Dan Liu, Huirong Li","doi":"10.1007/s12033-023-00928-3","DOIUrl":"10.1007/s12033-023-00928-3","url":null,"abstract":"<p><p>Immune escape is the major reason for immunotherapy failure in stomach adenocarcinoma (STAD). We tried to reveal the underlying mechanism of FGL1 influencing STAD in this study. Bioinformatics analyses were conducted to analyze the expression of FGL1, the signaling pathways affected by FGL1, and the relation between FGL1 and immune cell infiltration. Quantitative real-time PCR (qRT-PCR), cell counting kit-8 assay, colony formation assay, flow cytometry and Transwell assay were adopted to analyze FGL1 expression, cell viability, cell proliferation, cell apoptosis, and cell invasion, respectively. Enzyme-linked immunosorbent assay, lactate dehydrogenase method, qRT-PCR and Western blot were adopted to reveal proinflammatory cytokine expression, cytotoxicity and mRNA and protein expression of the Notch signaling-related genes, respectively, after co-culture of STAD cells and CD8<sup>+</sup>T cells. Nude mice experiment was conducted to validate the results obtained above. FGL1 expressed highly in STAD and could activate the Notch signaling pathway, and it was negatively correlated with CD8<sup>+</sup>T cell infiltration. Cell experiments confirmed that high expression of FGL1 facilitated proliferation and hindered apoptosis of STAD cells. Knockdown of FGL1 could facilitate expression of pro-inflammatory factors and the cytotoxicity of CD8<sup>+</sup>T cells in co-culture system of STAD and CD8<sup>+</sup> T cells. Knockdown of FGL1 could suppress the expression of the Notch signaling pathway-related genes, and the addition of Notch inhibitor proved that FGL1 promoted immune escape via the Notch signaling pathway. This study investigated the influence of FGL1 on STAD immune escape and demonstrated that FGL1 inhibited CD8<sup>+</sup> T cell activation by activating the Notch signaling pathway and thus promoted tumor immune escape in STAD, providing a new potential diagnostic marker and therapeutic target for the immunotherapy of STAD patients.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3203-3212"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71413099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-11-06DOI: 10.1007/s12033-023-00933-6
Anagha S Setlur, Chandrashekar Karunakaran, V Anusha, Aditya A Shendre, Akshay Uttarkar, Vidya Niranjan, H G Ashok Kumar, Raviraj Kusanur
{"title":"Investigating the Molecular Interactions of Quinoline Derivatives for Antibacterial Activity Against Bacillus subtilis: Computational Biology and In Vitro Study Interpretations.","authors":"Anagha S Setlur, Chandrashekar Karunakaran, V Anusha, Aditya A Shendre, Akshay Uttarkar, Vidya Niranjan, H G Ashok Kumar, Raviraj Kusanur","doi":"10.1007/s12033-023-00933-6","DOIUrl":"10.1007/s12033-023-00933-6","url":null,"abstract":"<p><p>Bacterial infections are evolving and one of the chief problems is emergence and prevalence of antibacterial resistance. Moreover, certain strains of Bacillus subtilis have become resistant to several antibiotics. To counteract this menace, the present work aimed to comprehend the antibacterial activity of synthesized two quinoline derivatives against Bacillus subtilis. Toxicity predictions via Protox II, SwissADME and T.E.S.T (Toxicity Estimation Software Tool) revealed that these derivatives were non-toxic and had little to no adverse effects. Molecular docking studies carried out in Schrodinger with two quinoline derivatives (referred Q1 and Q2) docked against selected target proteins (PDB IDs: 2VAM and1FSE) of B. subtilis demonstrated ideal binding energies (2VAM-Q1: - 4.63 kcal/mol and 2VAM-Q2: - 4.46 kcal/mol, and 1FSE-Q1: - 3.51 kcal/mol, 1FSE-Q2: - 6.34 kcal/mol). These complexes were simulated at 100 ns and the outcomes revealed their stability with slight conformational changes. Anti-microbial assay via disc diffusion method revealed zones of inhibition showing that B. subtilis was inhibited by both Q1 and Q2, with Q2 performing slightly better than Q1, pointing towards its effectiveness against this organism and necessitating further study on other bacteria in prospective studies. Thus, this study demonstrates that our novel quinoline derivatives exhibit antibacterial properties against Bacillus subtilis and can act as potent anti-bacterials.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3252-3273"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71483792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2024-11-01Epub Date: 2023-10-24DOI: 10.1007/s12033-023-00922-9
Yingjun Chen, Shaoxian Chen, Chandi Xu, Li Yu, Shanshan Chu, Jianzhi Bao, Jinwei Wang, Junwei Wang
{"title":"Identification of Diagnostic Biomarkers for Compensatory Liver Cirrhosis Based on Gut Microbiota and Urine Metabolomics Analyses.","authors":"Yingjun Chen, Shaoxian Chen, Chandi Xu, Li Yu, Shanshan Chu, Jianzhi Bao, Jinwei Wang, Junwei Wang","doi":"10.1007/s12033-023-00922-9","DOIUrl":"10.1007/s12033-023-00922-9","url":null,"abstract":"<p><p>Liver cirrhosis is one of the most prevalent chronic liver disorders with high mortality. We aimed to explore changed gut microbiome and urine metabolome in compensatory liver cirrhosis (CLC) patients, thus providing novel diagnostic biomarkers for CLC. Forty fecal samples from healthy volunteers (control: 19) and CLC patients (patient: 21) were undertaken 16S rDNA sequencing. Chromatography-mass spectrometry was performed on 40 urine samples (20 controls and 20 patients). Microbiome and metabolome data were separately analyzed using corresponding bioinformatics approaches. The diagnostic model was constructed using the least absolute shrinkage and selection operator regression. The optimal diagnostic model was determined by five-fold cross-validation. Pearson correlation analysis was applied to clarify the relations among the diagnostic markers. 16S rDNA sequencing analyses showed changed overall alpha diversity and beta diversity in patient samples compared with those of controls. Similarly, we identified 841 changed metabolites. Pathway analysis revealed that the differential metabolites were mainly associated with pathways, such as tryptophan metabolism, purine metabolism, and steroid hormone biosynthesis. A 9-maker diagnostic model for CLC was determined, including 7 microorganisms and 2 metabolites. In this model, there were multiple correlations between microorganisms and metabolites. Subdoligranulum, Agathobacter, norank_f_Eubacterium_coprostanoligenes_group, Butyricicoccus, Lachnospiraceae_UCG_004, and L-2,3-Dihydrodipicolinate were elevated in CLC patients, whereas Blautia, Monoglobus, and 5-Acetamidovalerate were reduced. A novel diagnostic model for CLC was constructed and verified to be reliable, which provides new strategies for the diagnosis and treatment of CLC.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3164-3181"},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50158371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}