Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2024-09-26DOI: 10.1007/s12033-024-01287-3
Chanam Melody Devi, Kangkan Deka, Amit Kumar Das, Apurba Talukdar, Piyong Sola
{"title":"Recent Advances in Marine-Derived Nanoformulation for the Management of Glioblastoma.","authors":"Chanam Melody Devi, Kangkan Deka, Amit Kumar Das, Apurba Talukdar, Piyong Sola","doi":"10.1007/s12033-024-01287-3","DOIUrl":"10.1007/s12033-024-01287-3","url":null,"abstract":"<p><p>Glioma is the most common and aggressive type of central nervous system tumor as categorized by the World Health Organization. Glioblastoma (GBA), in general, exhibits a grim prognosis and short life expectancy, rarely exceeding 14 months. The dismal prognosis is primarily attributed to the development of chemoresistance to temozolomide, the primary therapeutic agent for GBA treatment. Hence, it becomes imperative to develop novel drugs with antitumor efficacy rooted in distinct mechanisms compared to temozolomide. The vast marine environment contains a wealth of naturally occurring compounds from the sea (known as marine-derived natural products), which hold promise for future research in the quest for new anticancer drugs. Ongoing advancements in anticancer pharmaceuticals have led to an upswing in the isolation and validation of numerous pioneering breakthroughs and improvements in anticancer therapeutics. Nonetheless, the availability of FDA-approved marine-derived anticancer drugs remains limited, owing to various challenges and constraints. Among these challenges, drug delivery is a prominent hurdle. This review delves into an alternative approach for delivering marine-derived drugs using nanotechnological formulations and their mechanism of action for treating GBA.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3440-3453"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quercetin Alleviates the Progression of Chronic Rhinosinusitis Without Nasal Polyps by Inhibiting Nasal Mucosal Inflammation and Epithelial Apoptosis.","authors":"Lingzhao Meng, Xiaopeng Qu, Pengyu Tao, Jiajia Dong, Rui Guo","doi":"10.1007/s12033-024-01269-5","DOIUrl":"10.1007/s12033-024-01269-5","url":null,"abstract":"<p><p>Chronic rhinosinusitis (CRS) is a common chronic inflammatory upper respiratory tract, has a major subtype of CRS without nasal polyps (CRSsNP), constituting a great global health problem. Quercetin exerts the important roles in several inflammatory diseases. However, its function in CRSsNP remains unclear. In this study, quercetin dose-dependently alleviated allergic nasal symptoms of increased frequencies of sneezing and nasal scratching in Staphylococcus aureus-constructed CRSsNP mice. Importantly, quercetin attenuated the histopathological changes of nasal mucosa tissue in model mice, including mucosal thickening, glandular hyperplasia, noticeable mast cells, and inflammatory cell infiltration. Concomitantly, quercetin alleviated the increased mucosal inflammation in CRSsNP mice by suppressing the transcripts and releases of pro-inflammatory IL-1β, IL-6, and IL-4. Notably, quercetin restrained X-box binding protein 1 (XBP1)-mediated activation of the HIF-1α/wnt-β-catenin axis in nasal mucosal tissues in CRSsNP model. Intriguingly, intranasal instillation of Lv-XBP1 offset the protective efficacy of quercetin against the progression of CRSsNP by suppressing the production of inflammatory cytokine IL-1β, IL-6, and IL-4, frequency of sneezing and nasal scratching, and histopathological changes of nasal mucosa tissues. In vitro, higher expression of XBP1 was observed in human nasal epithelial cells (HNECs) of CRSsNP relative to the normal HNECs. Moreover, elevation of XBP1 by Lv-XBP1 treatment suppressed cell proliferation and increased apoptosis of CRSsNP HNECs. Mechanistically, XBP1 overexpression increased the expression of HIF-1α and β-catenin, indicating the activation of the HIF-1α/wnt-β-catenin axis. Nevertheless, treatment with quercetin inhibited XBP1-induced cell apoptosis and reversed XBP1-mediated inhibition in cell proliferation in HNECs, as well as the activation of the HIF-1α/wnt-β-catenin axis. Thus, these findings reveal that quercetin may attenuate the progression of CRSsNP by inhibiting nasal mucosal inflammation and epithelial barrier dysfunction via blocking the XBP1/HIF-1α/wnt-β-catenin pathway, supporting a promising agent against CRSsNP.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3532-3543"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2024-09-03DOI: 10.1007/s12033-024-01262-y
Jency Roshni, S Mahema, Sheikh F Ahmad, Haneen A Al-Mazroua, S Manjunath Kamath, Shiek S S J Ahmed
{"title":"Integrating Blood Biomarkers and Marine Brown Algae-Derived Inhibitors in Parkinson's Disease: A Multi-scale Approach from Interactomics to Quantum Mechanics.","authors":"Jency Roshni, S Mahema, Sheikh F Ahmad, Haneen A Al-Mazroua, S Manjunath Kamath, Shiek S S J Ahmed","doi":"10.1007/s12033-024-01262-y","DOIUrl":"10.1007/s12033-024-01262-y","url":null,"abstract":"<p><p>Parkinson's disease (PD) involves alpha-synuclein accumulation according to Braak's pattern, with diverse clinical progressions that complicate diagnosis and treatment. We aimed to correlate Braak's pattern with rapid progressive PD to identify blood-based biomarkers and therapeutic targets exploiting brown algae-derived bioactives for potential treatment. We implemented a systematic workflow of transcriptomic profiling, co-expression networks, cluster profiling, transcriptional regulator identification, molecular docking, quantum calculations, and dynamic simulations. The transcriptomic analyses exhibited highly expressed genes at each Braak's stage and in rapidly progressive PD. Co-expression networks for Braak's stages were built, and the top five clusters from each stage displayed significant overlap with differentially expressed genes in rapidly progressive PD, indicating shared biomarkers between the blood and the PD brain. Further investigation showed, NF-kappa-B p105 as the master transcriptional regulator of these biomarkers. Molecular docking screened phlorethopentafuhalol-A from brown algae, exhibiting a superior inhibitory effect with p105 (- 7.51 kcal/mol) by outperforming PD drugs and anti-inflammatory compounds (- 5.73 to - 4.38 kcal/mol). Quantum mechanics and molecular mechanics (QM/MM) calculations and dynamic simulations have confirmed the interactive stability of phlorethopentafuhalol-A with p105. Overall, our combined computational study shows that phlorethopentafuhalol-A derived from brown algae, may have healing properties that could help treat PD.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3500-3516"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2024-09-06DOI: 10.1007/s12033-024-01272-w
Yu Chen, Shuke Liu, Xueshan Zhang, Changpeng Zuo
{"title":"Changes and Diagnostic Significance of miR-542-3p Expression in Patients with Myocardial Infarction.","authors":"Yu Chen, Shuke Liu, Xueshan Zhang, Changpeng Zuo","doi":"10.1007/s12033-024-01272-w","DOIUrl":"10.1007/s12033-024-01272-w","url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) is a heart lesion, that endangers the life safety of patients. This study focused on exploring the clinical effect of miR-542-3p on AMI and no-reflow after percutaneous coronary intervention (PCI). Serum samples were collected from 100 AMI emergency inpatients. The expression of miR-542-3p was quantified by qPCR. The predictive role of miR-542-3p was disclosed by plotting ROC curve. In addition, AMI subjects were cataloged into a group of no-reflow and normal reflow group. The risk factors of no-reflow were estimated by logistic regression analysis. In the serum samples of AMI patients, the level of miR-542-3p showed a pattern of decreasing. MiR-542-3p expression represented a high sensitivity and specificity of the prediction of AMI. A decrease of miR-542-3p content was revealed in AMI patients without reflow after PCI. Logistic regression results reflected that miR-542-3p was an independent biomarker for no-reflow. The declined miR-542-3p expression was a predictive marker for AMI and no-reflow in AMI patients.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3544-3551"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2023-06-21DOI: 10.1007/s12033-023-00787-y
Obaid Bhat, Yuwalee Unpaprom, Rameshprabu Ramaraj
{"title":"Effect of Photoperiod and White LED on Biomass Growth and Protein Production by Spirulina.","authors":"Obaid Bhat, Yuwalee Unpaprom, Rameshprabu Ramaraj","doi":"10.1007/s12033-023-00787-y","DOIUrl":"10.1007/s12033-023-00787-y","url":null,"abstract":"<p><p>The constant increase in demand for food, valued bio-based compounds and energy demand has prompted the development of innovative and sustainable resources. New technologies and strategies must be implemented to boost microalgae biomass production, such as using different photoperiods along with (LED) light-emitting diodes to stimulate biomass production and boost profits. This work investigates the cultivation of blue-green microalgae (Spirulina) in a closed lab condition. The current study aims to boost Spirulina biomass production by creating ideal growth conditions using different photoperiods (12:12; 10:14; 14:10) light/dark with a constant light intensity of 2000 lx from White LED lights. The obtained optical density and protein content was highest for photoperiod 14L: 10D and values were 0.280 OD, with a protein content of 23.44 g/100 g, respectively. This study is a crucial first step in identifying the best photoperiod conditions to help S. platensis produce more biomass. The study results showed that increasing photoperiod for S. platensis farming can improve the quality and amount of biomass generated in those cultures without negatively affecting growth.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3552-3560"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10025374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2024-09-27DOI: 10.1007/s12033-024-01271-x
Nathalia Delazeri de Carvalho, Henrique Krambeck Rofatto, Karina de Senna Villar, Roberta Fiusa Magnelli, P I Silva Junior, Ronaldo Zucatelli Mendonça
{"title":"Proteins with Anti-apoptotic Action in the Hemolymph of Caterpillars of the Megalopygidae Family Acts by Maintaining the Structure of the Cellular Cytoskeleton.","authors":"Nathalia Delazeri de Carvalho, Henrique Krambeck Rofatto, Karina de Senna Villar, Roberta Fiusa Magnelli, P I Silva Junior, Ronaldo Zucatelli Mendonça","doi":"10.1007/s12033-024-01271-x","DOIUrl":"10.1007/s12033-024-01271-x","url":null,"abstract":"<p><p>Brazil has a very large biological variety, which is an almost inexhaustible source of substances of pharmacological and biotechnological interest. Several studies have demonstrated the presence of bioactive peptides in insect hemolymph and their potential use as therapeutic agents. However, few data are available regarding molecules extracted from insects with anti-apoptotic action. The objective of this work was to identify the presence of proteins from the hemolymph of caterpillars of the Megalopygidae family with pharmacological and biotechnological interest. This study provides preliminary and innovative information on a new substance that inhibits cellular apoptopsis and stabilizes the tested cells, impacting the cytoskeleton, maintaining cellular structure and its functions. To this, two species of Megalopygidae family were studied, Podalia sp. and Megalopyge albicolis. Cytotoxicity tests on Vero and Sf-9 cells revealed that the hemolymph of both caterpillars was cytotoxic only at concentrations greater than 5%v/v. In the anti-apoptotic activity assays, it was verified that the supplementation of cell cultures with only 1% of hemolymph v/v is sufficient to inhibit cell death by apoptosis induced by different inducers such as terbutyl, actinomycin D, hydrogen peroxide, or even by nutrient depletion. For this study, cells were stained with trypan blue, crystal violet, and fluorescent markers to cytoskeleton (actin and tubulin), mitochondria membrane electric potential (JC-1), and apoptosis marker (acridine orange and ethidium). The protein responsible for anti-apoptotic action was isolated through gel filtration chromatography, using an AKTA purifier high-resolution liquid chromatography system. The hemolymph was fractionated into 3 pools for Podalia sp. and 6 pools for M. abicolis. In the antiapoptotic tests, semi-purified hemolymph from both caterpillars showed anti-apoptotic effect in VERO and SF-9 cells, pre-treated with only 1% v/v of hemolymph and induced to death by different and apoptotic inductors. Was observed that the molecule with anti-apoptotic effect is present in pool 3 in both hemolymphs. This protector effect blocked and attenuated the disruption of the cytoskeleton (actin filaments), being that the protective effect also was observed on the integrity of the mitochondrial membrane of SF-9 cells pre-treated with both hemolymphs and treated with the apoptosis inducer Terbutil at concentrations of 25 to 100 µM. By acting on the mitochondrial pathway of death by apoptosis, and by maintaining the structure of the cytoskeleton and cellular functions, pathway that can cause disorders and diseases neurodegenerative, the substances present in the hemolymph of these and other caterpillars could be good candidates in studies for the treatment of neurodegenerative diseases such as Parkinson's disease and Alzheimer's.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3708-3727"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2024-10-01DOI: 10.1007/s12033-024-01292-6
Ying Xu, Chunxu Liu, Qingrui Meng
{"title":"ZNF217 Mediates Transcriptional Activation of GRHL3 to Regulate SLC22A31 and Promote Malignant Progression in Thyroid Cancer.","authors":"Ying Xu, Chunxu Liu, Qingrui Meng","doi":"10.1007/s12033-024-01292-6","DOIUrl":"10.1007/s12033-024-01292-6","url":null,"abstract":"<p><p>The incidence of thyroid cancer (THCA) has increased worldwide during the past 40 years. However, an understanding of the mechanisms and major transcription factors involved in THCA is insufficient to identify therapeutic targets against THCA. To reveal such mechanisms, we conducted bioinformatics analyses to assess the differential expression in human THCA sample and normal tissue sample, leading us to focus on the function of the ZNF217/GRHL3/ SLC22A31 axis in mediating biological activity in THCA. The genes of interest were interfered with lentiviral vectors, and transfection efficiency was verified using RT-qPCR. ZNF217, GRHL3, and SLC22A31 were abundantly expressed in THCA tissues or cells. Knockdown of GRHL3, ZNF217, or SLC22A31 all significantly curtailed the malignant biological behavior of THCA cells. ZNF217 promoted GRHL3 expression through transcriptional activation, thereby increasing the transcription of SLC22A31. Ectopic expression of GRHL3 or SLC22A31 abated the suppressing impact of ZNF217 or GRHL3 knockdown on the biological activity of THCA cells. Collectively, our results demonstrated that ZNF217 acted as an activator of GRHL3, thereby promoting the expression of SLC22A31 and the malignant activity of THCA cells.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3753-3768"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2023-09-13DOI: 10.1007/s12033-023-00861-5
Benjamin Palić, Ivica Brizić, Emina Karahmet Sher, Ivona Cvetković, Amina Džidić-Krivić, Heba Taha Mohmmed Abdelghani, Farooq Sher
{"title":"Effects of Zofenopril on Arterial Stiffness in Hypertension Patients.","authors":"Benjamin Palić, Ivica Brizić, Emina Karahmet Sher, Ivona Cvetković, Amina Džidić-Krivić, Heba Taha Mohmmed Abdelghani, Farooq Sher","doi":"10.1007/s12033-023-00861-5","DOIUrl":"10.1007/s12033-023-00861-5","url":null,"abstract":"<p><p>Angiotensin-converting enzyme inhibitors (ACEIs) reduce arterial stiffness beyond their antihypertensive effect. Studies showed that sulfhydryl ACEIs have the antioxidative potential to improve endothelial function, which might have a clinical effect on arterial distensibility. However, there are no studies that directly compare the effects of sulfhydryl (zofenopril) and non-sulfhydryl ACEIs (enalapril) on arterial stiffness. Therefore, this prospective study aims to compare the effects of enalapril and zofenopril on arterial stiffness and oxidative stress in both short- and long-term treatment of arterial hypertension (AH). Baseline and post-treatment peripheral and central arterial pressure indices, augmentation index (Aix), aortic pulse wave velocity (ao-PWV), serum levels of oxidized low-density cholesterol lipoprotein, LDL and uric acid (UA) were measured. The results showed that acute treatment with zofenopril, in contrast to enalapril, significantly decreased peripheral and central Aix (p < 0.001). Chronic treatment with zofenopril showed a superior effect over enalapril on the reduction of the peripheral systolic arterial pressure with reduction of ao-PWV (p = 0.004), as well as a reduction in peripheral Aix (p = 0.021) and central Aix (p = 0.021). Therefore, this study indicates that zofenopril has beneficial effects on the reduction of arterial stiffness compared to enalapril. It has potent clinical efficacy in AH treatment and further studies should compare its safety and long-term efficacy to other AH drugs that would aid clinicians in treating AH and other various cardiovascular diseases that have arterial stiffness as a common denominator.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3454-3466"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413429/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generation of High Concentration Free Volatile Fatty Acids from Continuous Anaerobic Digestion of Chicken Manure by Suppressing the Decomposition of Nitrogenous Components.","authors":"Yapeng Song, Wei Qiao, Tongxin Xue, Yuguang Zhou, Renjie Dong","doi":"10.1007/s12033-023-00905-w","DOIUrl":"10.1007/s12033-023-00905-w","url":null,"abstract":"<p><p>Free volatile fatty acids (free VFA) play a crucial role in the inactivation of pathogens during the anaerobic digestion of animal manure. However, the decomposition of nitrogenous components can release alkaline ammonium-N, which might increase the pH and reduce the concentration of free VFA. In this study, continuous anaerobic digestion of high-solid chicken manure was conducted for 150 days. The results indicated the process stabilized at a pH of approximately 6.0, with total ammonia nitrogen (TAN) of around 7.0 g/L. The resulting concentration of free VFA was only about 3.1 g/L, which might not sufficiently effective for pathogen inactivation. On the 70th day, hydrogen chloride was added into the reactor to adjust the pH to 5.5. This led to a further decrease in pH to 4.3 and TAN to 2.3 g/L. As a result, the concentration of free VFA significantly increased, reaching up to 12.6 g/L. These findings support the potential for generating high levels of free VFA even for nitrogen-rich manure by implementing an appropriate process regulation.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3467-3475"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BiotechnologyPub Date : 2025-09-01Epub Date: 2024-09-02DOI: 10.1007/s12033-024-01270-y
Abhavya Raja, Abhishek Kasana, Vaishali Verma
{"title":"Next-Generation Therapeutic Antibodies for Cancer Treatment: Advancements, Applications, and Challenges.","authors":"Abhavya Raja, Abhishek Kasana, Vaishali Verma","doi":"10.1007/s12033-024-01270-y","DOIUrl":"10.1007/s12033-024-01270-y","url":null,"abstract":"<p><p>The field of cancer treatment has evolved significantly over the last decade with the emergence of next-generation therapeutic antibodies. Conventional treatments like chemotherapy pose significant challenges, including adverse side effects. Monoclonal antibodies have paved the way for more targeted and effective interventions. The evolution from chimeric to humanized and fully human antibodies has led to a reduction in immunogenicity and enhanced tolerance in vivo. The advent of next-generation antibodies, including bispecific antibodies, nanobodies, antibody-drug conjugates, glyco-engineered antibodies, and antibody fragments, represents a leap forward in cancer therapy. These innovations offer increased potency, adaptability, and reduced drug resistance. Challenges such as target validation, immunogenicity, and high production costs exist. However, technological advancements in antibody engineering techniques provide optimism for addressing these issues. The future promises a paradigm shift, where ongoing research will propel these powerful antibodies to the forefront, revolutionizing the fight against cancer and creating new preventive and curative treatments. This review provides an overview of three next-generation antibody-based molecules, namely bispecific antibodies, antibody-drug conjugates, and nanobodies that have shown promising results in cancer treatment. It discusses the evolution of antibodies from conventional forms to next-generation molecules, along with their applications in cancer treatment, production methods, and associated challenges. The review aims to offer researchers insights into the evolving landscape of next-generation antibody-based cancer therapeutics and their potential to revolutionize treatment strategies.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3345-3365"},"PeriodicalIF":2.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}