Nature Reviews Microbiology最新文献

筛选
英文 中文
Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention 血流感染:发病机制和干预机会
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-17 DOI: 10.1038/s41579-024-01105-2
Caitlyn L. Holmes, Owen R. Albin, Harry L. T. Mobley, Michael A. Bachman
{"title":"Bloodstream infections: mechanisms of pathogenesis and opportunities for intervention","authors":"Caitlyn L. Holmes, Owen R. Albin, Harry L. T. Mobley, Michael A. Bachman","doi":"10.1038/s41579-024-01105-2","DOIUrl":"10.1038/s41579-024-01105-2","url":null,"abstract":"Bloodstream infections (BSIs) are common in hospitals, often life-threatening and increasing in prevalence. Microorganisms in the blood are usually rapidly cleared by the immune system and filtering organs but, in some cases, they can cause an acute infection and trigger sepsis, a systemic response to infection that leads to circulatory collapse, multiorgan dysfunction and death. Most BSIs are caused by bacteria, although fungi also contribute to a substantial portion of cases. Escherichia coli, Staphylococcus aureus, coagulase-negative Staphylococcus, Klebsiella pneumoniae and Candida albicans are leading causes of BSIs, although their prevalence depends on patient demographics and geographical region. Each species is equipped with unique factors that aid in the colonization of initial sites and dissemination and survival in the blood, and these factors represent potential opportunities for interventions. As many pathogens become increasingly resistant to antimicrobials, new approaches to diagnose and treat BSIs at all stages of infection are urgently needed. In this Review, we explore the prevalence of major BSI pathogens, prominent mechanisms of BSI pathogenesis, opportunities for prevention and diagnosis, and treatment options. In this Review, Holmes, Bachman and colleagues explore the prevalence of the major pathogens causing bloodstream infections, prominent mechanisms of bloodstream infection pathogenesis, opportunities for prevention and diagnosis, and treatment options.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 4","pages":"210-224"},"PeriodicalIF":69.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and ecology of microbial sulfur metabolism 微生物硫代谢的多样性和生态学
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-17 DOI: 10.1038/s41579-024-01104-3
Zhichao Zhou, Patricia Q. Tran, Elise S. Cowley, Elizabeth Trembath-Reichert, Karthik Anantharaman
{"title":"Diversity and ecology of microbial sulfur metabolism","authors":"Zhichao Zhou, Patricia Q. Tran, Elise S. Cowley, Elizabeth Trembath-Reichert, Karthik Anantharaman","doi":"10.1038/s41579-024-01104-3","DOIUrl":"10.1038/s41579-024-01104-3","url":null,"abstract":"Sulfur plays a pivotal role in interactions within the atmosphere, lithosphere, pedosphere, hydrosphere and biosphere, and the functioning of living organisms. In the Earth’s crust, mantle, and atmosphere, sulfur undergoes geochemical transformations due to natural and anthropogenic factors. In the biosphere, sulfur participates in the formation of amino acids, proteins, coenzymes and vitamins. Microorganisms in the biosphere are crucial for cycling sulfur compounds through oxidation, reduction and disproportionation reactions, facilitating their bioassimilation and energy generation. Microbial sulfur metabolism is abundant in both aerobic and anaerobic environments and is interconnected with biogeochemical cycles of important elements such as carbon, nitrogen and iron. Through metabolism, competition or cooperation, microorganisms metabolizing sulfur can drive the consumption of organic carbon, loss of fixed nitrogen and production of climate-active gases. Given the increasing significance of sulfur metabolism in environmental alteration and the intricate involvement of microorganisms in sulfur dynamics, a timely re-evaluation of the sulfur cycle is imperative. This Review explores our understanding of microbial sulfur metabolism, primarily focusing on the transformations of inorganic sulfur. We comprehensively overview the sulfur cycle in the face of rapidly changing ecosystems on Earth, highlighting the importance of microbially-mediated sulfur transformation reactions across different environments, ecosystems and microbiomes. In this Review, Zhou, Tran et al. provide a comprehensive overview of the metabolic reactions by which microorganisms transform inorganic sulfur compounds across varied microbiomes and ecosystems, and explore the link between sulfur cycling microorganisms and climate change.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 2","pages":"122-140"},"PeriodicalIF":69.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A gut bacterium trims mucosal immunity 一种肠道细菌能增强黏膜免疫力
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-15 DOI: 10.1038/s41579-024-01117-y
Agustina Taglialegna
{"title":"A gut bacterium trims mucosal immunity","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01117-y","DOIUrl":"10.1038/s41579-024-01117-y","url":null,"abstract":"In this study, Lu et al. identify the gut symbiont Tomasiella immunophila as a contributor to the degradation of murine secretory immunoglobulin A, with effects on mucosal immunity.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"740-740"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-emergence of Oropouche virus 奥罗普切病毒再次出现
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-15 DOI: 10.1038/s41579-024-01118-x
Agustina Taglialegna
{"title":"Re-emergence of Oropouche virus","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01118-x","DOIUrl":"10.1038/s41579-024-01118-x","url":null,"abstract":"The recent re-emergence of Oropouche virus in Central and South America and the Caribbean poses a public health threat and highlights the need for improved surveillance and control measures.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"740-740"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthropogenic impacts on the terrestrial subsurface biosphere 人类活动对陆地地下生物圈的影响
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-15 DOI: 10.1038/s41579-024-01110-5
Kaela K. Amundson, Mikayla A. Borton, Michael J. Wilkins
{"title":"Anthropogenic impacts on the terrestrial subsurface biosphere","authors":"Kaela K. Amundson, Mikayla A. Borton, Michael J. Wilkins","doi":"10.1038/s41579-024-01110-5","DOIUrl":"10.1038/s41579-024-01110-5","url":null,"abstract":"The terrestrial subsurface is estimated to be the largest reservoir of microbial life on Earth. However, the subsurface also harbours economic, industrial and environmental resources, on which humans heavily rely, including diverse energy sources and formations for the storage of industrial waste and carbon dioxide for climate change mitigation. As a result of this anthropogenic activity, the subsurface landscape is transformed, including the subsurface biosphere. Through the creation of new environments and the introduction of substrates that fuel microbial life, the structure and function of subsurface microbiomes shift markedly. These microbial changes often have unintended effects on overall ecosystem function and are frequently challenging to manage from the surface of the Earth. In this Review, we highlight emerging research that investigates the impacts of anthropogenic activity on the terrestrial subsurface biosphere. We explore how humans alter the constraints on microbial life in the subsurface through drilling, mining, contamination and resource extraction, along with the resulting impacts of microorganisms on resource recovery and subsurface infrastructure. In this Review, Amundson et al. examine the importance and diversity of microbial life in the deep terrestrial subsurface and discuss how anthropogenic activity can affect microbial activity and composition in engineered subsurface systems.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 3","pages":"147-161"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential Akkermansia muciniphila:生物学、微生物生态学、宿主相互作用和治疗潜力
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-15 DOI: 10.1038/s41579-024-01106-1
Athanasia Ioannou, Maryse D. Berkhout, Sharon Y. Geerlings, Clara Belzer
{"title":"Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential","authors":"Athanasia Ioannou, Maryse D. Berkhout, Sharon Y. Geerlings, Clara Belzer","doi":"10.1038/s41579-024-01106-1","DOIUrl":"10.1038/s41579-024-01106-1","url":null,"abstract":"Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host–microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics. In this Review, Belzer and colleagues explore the diversity of the gut bacterium Akkermansia muciniphila, its biological functions and interactions with the host, diet and other members of the microbiota, as well as its association with health and disease and its potential in various applications.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 3","pages":"162-177"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer 肠道微生物组和膳食纤维:对肥胖、心脏代谢疾病和癌症的影响
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-10 DOI: 10.1038/s41579-024-01108-z
Nathalie M. Delzenne, Laure B. Bindels, Audrey M. Neyrinck, Jens Walter
{"title":"The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer","authors":"Nathalie M. Delzenne, Laure B. Bindels, Audrey M. Neyrinck, Jens Walter","doi":"10.1038/s41579-024-01108-z","DOIUrl":"10.1038/s41579-024-01108-z","url":null,"abstract":"Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake. In this Review, Delzenne et al. explore how dietary fibres interact with and modulate the gut microbiota, and discuss their effects on human physiology, particularly in the context of obesity, cardiometabolic diseases and cancer.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 4","pages":"225-238"},"PeriodicalIF":69.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial small molecule metabolites implicated in gastrointestinal cancer development 与胃肠道癌症发展有关的细菌小分子代谢物
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-07 DOI: 10.1038/s41579-024-01103-4
Tayah Turocy, Jason M. Crawford
{"title":"Bacterial small molecule metabolites implicated in gastrointestinal cancer development","authors":"Tayah Turocy, Jason M. Crawford","doi":"10.1038/s41579-024-01103-4","DOIUrl":"10.1038/s41579-024-01103-4","url":null,"abstract":"Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host–microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers. In this Review, Crawford and Turocy examine diverse small molecule metabolites produced by the human microbiota, their role as potential risk factors for cancer development as well as novel mechanistic insights demonstrating their association with gastrointestinal cancer.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 2","pages":"106-121"},"PeriodicalIF":69.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards next-generation treatment options to combat Plasmodium falciparum malaria 开发抗击恶性疟原虫疟疾的新一代治疗方案
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-10-04 DOI: 10.1038/s41579-024-01099-x
John Okombo, David A. Fidock
{"title":"Towards next-generation treatment options to combat Plasmodium falciparum malaria","authors":"John Okombo, David A. Fidock","doi":"10.1038/s41579-024-01099-x","DOIUrl":"10.1038/s41579-024-01099-x","url":null,"abstract":"Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained. In this Review, Okombo and Fidock discuss the current antimalarial drug development pipeline and highlight examples of new, promising targets. They also explore different approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 3","pages":"178-191"},"PeriodicalIF":69.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial extracellular polymeric substances in the environment, technology and medicine 环境、技术和医学中的微生物胞外聚合物物质
IF 69.2 1区 生物学
Nature Reviews Microbiology Pub Date : 2024-09-27 DOI: 10.1038/s41579-024-01098-y
Hans-Curt Flemming, Eric D. van Hullebusch, Brenda J. Little, Thomas R. Neu, Per H. Nielsen, Thomas Seviour, Paul Stoodley, Jost Wingender, Stefan Wuertz
{"title":"Microbial extracellular polymeric substances in the environment, technology and medicine","authors":"Hans-Curt Flemming, Eric D. van Hullebusch, Brenda J. Little, Thomas R. Neu, Per H. Nielsen, Thomas Seviour, Paul Stoodley, Jost Wingender, Stefan Wuertz","doi":"10.1038/s41579-024-01098-y","DOIUrl":"10.1038/s41579-024-01098-y","url":null,"abstract":"Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine. In this Review, Flemming and colleagues aim to explore the roles of microbial extracellular polymeric substances in the environment, in technology and in medicine.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 2","pages":"87-105"},"PeriodicalIF":69.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信