Zhichao Zhou, Patricia Q. Tran, Elise S. Cowley, Elizabeth Trembath-Reichert, Karthik Anantharaman
{"title":"Diversity and ecology of microbial sulfur metabolism","authors":"Zhichao Zhou, Patricia Q. Tran, Elise S. Cowley, Elizabeth Trembath-Reichert, Karthik Anantharaman","doi":"10.1038/s41579-024-01104-3","DOIUrl":"10.1038/s41579-024-01104-3","url":null,"abstract":"Sulfur plays a pivotal role in interactions within the atmosphere, lithosphere, pedosphere, hydrosphere and biosphere, and the functioning of living organisms. In the Earth’s crust, mantle, and atmosphere, sulfur undergoes geochemical transformations due to natural and anthropogenic factors. In the biosphere, sulfur participates in the formation of amino acids, proteins, coenzymes and vitamins. Microorganisms in the biosphere are crucial for cycling sulfur compounds through oxidation, reduction and disproportionation reactions, facilitating their bioassimilation and energy generation. Microbial sulfur metabolism is abundant in both aerobic and anaerobic environments and is interconnected with biogeochemical cycles of important elements such as carbon, nitrogen and iron. Through metabolism, competition or cooperation, microorganisms metabolizing sulfur can drive the consumption of organic carbon, loss of fixed nitrogen and production of climate-active gases. Given the increasing significance of sulfur metabolism in environmental alteration and the intricate involvement of microorganisms in sulfur dynamics, a timely re-evaluation of the sulfur cycle is imperative. This Review explores our understanding of microbial sulfur metabolism, primarily focusing on the transformations of inorganic sulfur. We comprehensively overview the sulfur cycle in the face of rapidly changing ecosystems on Earth, highlighting the importance of microbially-mediated sulfur transformation reactions across different environments, ecosystems and microbiomes. In this Review, Zhou, Tran et al. provide a comprehensive overview of the metabolic reactions by which microorganisms transform inorganic sulfur compounds across varied microbiomes and ecosystems, and explore the link between sulfur cycling microorganisms and climate change.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 2","pages":"122-140"},"PeriodicalIF":69.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A gut bacterium trims mucosal immunity","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01117-y","DOIUrl":"10.1038/s41579-024-01117-y","url":null,"abstract":"In this study, Lu et al. identify the gut symbiont Tomasiella immunophila as a contributor to the degradation of murine secretory immunoglobulin A, with effects on mucosal immunity.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 12","pages":"740-740"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Athanasia Ioannou, Maryse D. Berkhout, Sharon Y. Geerlings, Clara Belzer
{"title":"Akkermansia muciniphila: biology, microbial ecology, host interactions and therapeutic potential","authors":"Athanasia Ioannou, Maryse D. Berkhout, Sharon Y. Geerlings, Clara Belzer","doi":"10.1038/s41579-024-01106-1","DOIUrl":"10.1038/s41579-024-01106-1","url":null,"abstract":"Akkermansia muciniphila is a gut bacterium that colonizes the gut mucosa, has a role in maintaining gut health and shows promise for potential therapeutic applications. The discovery of A. muciniphila as an important member of our gut microbiome, occupying an extraordinary niche in the human gut, has led to new hypotheses on gut health, beneficial microorganisms and host–microbiota interactions. This microorganism has established a unique position in human microbiome research, similar to its role in the gut ecosystem. Its unique traits in using mucin sugars and mechanisms of action that can modify host health have made A. muciniphila a subject of enormous attention from multiple research fields. A. muciniphila is becoming a model organism studied for its ability to modulate human health and gut microbiome structure, leading to commercial products, a genetic model and possible probiotic formulations. This Review provides an overview of A. muciniphila and Akkermansia genus phylogeny, ecophysiology and diversity. Furthermore, the Review discusses perspectives on ecology, strategies for harnessing beneficial effects of A. muciniphila for human mucosal metabolic and gut health, and its potential as a biomarker for diagnostics and prognostics. In this Review, Belzer and colleagues explore the diversity of the gut bacterium Akkermansia muciniphila, its biological functions and interactions with the host, diet and other members of the microbiota, as well as its association with health and disease and its potential in various applications.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 3","pages":"162-177"},"PeriodicalIF":69.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathalie M. Delzenne, Laure B. Bindels, Audrey M. Neyrinck, Jens Walter
{"title":"The gut microbiome and dietary fibres: implications in obesity, cardiometabolic diseases and cancer","authors":"Nathalie M. Delzenne, Laure B. Bindels, Audrey M. Neyrinck, Jens Walter","doi":"10.1038/s41579-024-01108-z","DOIUrl":"10.1038/s41579-024-01108-z","url":null,"abstract":"Dietary fibres constitute a heterogeneous class of nutrients that are key in the prevention of various chronic diseases. Most dietary fibres are fermented by the gut microbiome and may, thereby, modulate the gut microbial ecology and metabolism, impacting human health. Dietary fibres may influence the occurrence of specific bacterial taxa, with this effect varying between individuals. The effect of dietary fibres on microbial diversity is a matter of debate. Most intervention studies with dietary fibres in the context of obesity and related metabolic disorders reveal the need for an accurate assessment of the microbiome to better understand the variable response to dietary fibres. Epidemiological studies confirm that a high dietary fibre intake is strongly associated with a reduced occurrence of many types of cancer. However, there is a need to determine the impact of intervention with specific dietary fibres on cancer risk, therapy efficacy and toxicity, as well as in cancer cachexia. In this Review, we summarize the mechanisms by which the gut microbiome can mediate the physiological benefits of dietary fibres in the contexts of obesity, cardiometabolic diseases and cancer, their incidence being clearly linked to low dietary fibre intake. In this Review, Delzenne et al. explore how dietary fibres interact with and modulate the gut microbiota, and discuss their effects on human physiology, particularly in the context of obesity, cardiometabolic diseases and cancer.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 4","pages":"225-238"},"PeriodicalIF":69.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial small molecule metabolites implicated in gastrointestinal cancer development","authors":"Tayah Turocy, Jason M. Crawford","doi":"10.1038/s41579-024-01103-4","DOIUrl":"10.1038/s41579-024-01103-4","url":null,"abstract":"Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host–microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers. In this Review, Crawford and Turocy examine diverse small molecule metabolites produced by the human microbiota, their role as potential risk factors for cancer development as well as novel mechanistic insights demonstrating their association with gastrointestinal cancer.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 2","pages":"106-121"},"PeriodicalIF":69.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hans-Curt Flemming, Eric D. van Hullebusch, Brenda J. Little, Thomas R. Neu, Per H. Nielsen, Thomas Seviour, Paul Stoodley, Jost Wingender, Stefan Wuertz
{"title":"Microbial extracellular polymeric substances in the environment, technology and medicine","authors":"Hans-Curt Flemming, Eric D. van Hullebusch, Brenda J. Little, Thomas R. Neu, Per H. Nielsen, Thomas Seviour, Paul Stoodley, Jost Wingender, Stefan Wuertz","doi":"10.1038/s41579-024-01098-y","DOIUrl":"10.1038/s41579-024-01098-y","url":null,"abstract":"Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine. In this Review, Flemming and colleagues aim to explore the roles of microbial extracellular polymeric substances in the environment, in technology and in medicine.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"23 2","pages":"87-105"},"PeriodicalIF":69.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Publisher Correction: Microorganisms, climate change, and the Sustainable Development Goals: progress and challenges","authors":"Janet K. Jansson","doi":"10.1038/s41579-024-01111-4","DOIUrl":"10.1038/s41579-024-01111-4","url":null,"abstract":"","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 11","pages":"736-736"},"PeriodicalIF":69.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41579-024-01111-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142291523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ISME19","authors":"Agustina Taglialegna","doi":"10.1038/s41579-024-01113-2","DOIUrl":"10.1038/s41579-024-01113-2","url":null,"abstract":"Nature Reviews Microbiology attended the 19th biennial meeting of the International Society for Microbial Ecology (ISME) in Cape Town, South Africa.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 11","pages":"668-668"},"PeriodicalIF":69.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges and strategies for addressing antibacterial drug resistance in LMICs","authors":"Ursula Theuretzbacher","doi":"10.1038/s41579-024-01080-8","DOIUrl":"10.1038/s41579-024-01080-8","url":null,"abstract":"Antibacterial drug resistance is a critical global health issue that affects countries across all economic levels, though it disproportionately affects populations in low- and middle-income countries. Infection and resistance rates vary considerably, necessitating tailored interventions to meet the specific demands of each area. This underscores the need for global solidarity and national accountability in effectively addressing antibacterial drug resistance.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"22 10","pages":"591-592"},"PeriodicalIF":69.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}