Nature Reviews Microbiology最新文献

筛选
英文 中文
The HIV-1 envelope glycoprotein: structure, function and interactions with neutralizing antibodies HIV-1包膜糖蛋白:结构、功能和与中和抗体的相互作用
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-23 DOI: 10.1038/s41579-025-01206-6
P. J. Klasse, Rogier W. Sanders, Andrew B. Ward, Ian A. Wilson, John P. Moore
{"title":"The HIV-1 envelope glycoprotein: structure, function and interactions with neutralizing antibodies","authors":"P. J. Klasse, Rogier W. Sanders, Andrew B. Ward, Ian A. Wilson, John P. Moore","doi":"10.1038/s41579-025-01206-6","DOIUrl":"https://doi.org/10.1038/s41579-025-01206-6","url":null,"abstract":"<p>To end the AIDS pandemic, an effective vaccine is sought to prevent new infections by inducing broadly active HIV-1 neutralizing antibodies. Monoclonal neutralizing antibodies can be administered therapeutically to people living with HIV-1 and preventively to those who are uninfected and at risk. Neutralizing antibodies block viral entry into susceptible cells by targeting the HIV-1 envelope glycoprotein, which mediates entry by membrane fusion. The envelope glycoprotein evades neutralizing antibody responses by multiple means, including extreme sequence variation and a dense protective glycan shield. Despite these impediments, many broadly active neutralizing human antibodies have been isolated, typically after years of HIV-1 infection. In this Review, we describe how such antibodies target distinct epitope clusters that cumulatively now cover most of the external surface of the envelope glycoprotein. These antibodies vary in potency, in the degree to which they reduce infectivity, in mechanism of action, and in structural basis, affinity and kinetics of binding. Broadly neutralizing antibody responses have, however, so far not been elicited by immunization with envelope glycoproteins. That situation may change though with the rapid advancement of structure-guided immunogen design strategies that engage germline versions of human antibodies and guide their maturation towards greater neutralization potency and breadth.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"277 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144684531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anaerobic oxidation of methane: it takes two to tango 甲烷的厌氧氧化:两个人才能跳探戈
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-22 DOI: 10.1038/s41579-025-01218-2
Rafael Laso-Pérez
{"title":"Anaerobic oxidation of methane: it takes two to tango","authors":"Rafael Laso-Pérez","doi":"10.1038/s41579-025-01218-2","DOIUrl":"https://doi.org/10.1038/s41579-025-01218-2","url":null,"abstract":"In this Journal Club Rafael Laso Pérez revisits a paper that provided evidence of the syntrophic relation between anaerobic methane-oxidizing archaea and sulfate-reducing bacteria and highlights how scientific collaboration can propel a field forward.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"51 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Body armour keeps predators away 防弹衣使捕食者远离
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-22 DOI: 10.1038/s41579-025-01219-1
Andrea Du Toit
{"title":"Body armour keeps predators away","authors":"Andrea Du Toit","doi":"10.1038/s41579-025-01219-1","DOIUrl":"https://doi.org/10.1038/s41579-025-01219-1","url":null,"abstract":"This study shows that bacterial prey cells are covered in a dense network of curli fibres that confer defence against predatory bacteria.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"283 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary hotspots in bacterial genomes 细菌基因组的进化热点
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-21 DOI: 10.1038/s41579-025-01217-3
Adrian Cazares, Daniel Cazares, Wendy Figueroa
{"title":"Evolutionary hotspots in bacterial genomes","authors":"Adrian Cazares, Daniel Cazares, Wendy Figueroa","doi":"10.1038/s41579-025-01217-3","DOIUrl":"https://doi.org/10.1038/s41579-025-01217-3","url":null,"abstract":"This Genome Watch discusses recent findings in bacterial mutational hotspots, their impact on pathogenesis and antimicrobial resistance, and how we can harness this knowledge to predict pathogen evolution.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"12 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A model ‘organism’ split to uncover microbial symbiosis 一个模型“有机体”分裂,揭示微生物共生
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-21 DOI: 10.1038/s41579-025-01214-6
Masaru K. Nobu
{"title":"A model ‘organism’ split to uncover microbial symbiosis","authors":"Masaru K. Nobu","doi":"10.1038/s41579-025-01214-6","DOIUrl":"https://doi.org/10.1038/s41579-025-01214-6","url":null,"abstract":"In this Journal Club, Masaru Nobu revisits a paper that introduced the concept of syntrophy.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"14 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blurred lines in the mycorrhiza world 菌根世界里模糊的界限
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-21 DOI: 10.1038/s41579-025-01215-5
Juliana Almario
{"title":"Blurred lines in the mycorrhiza world","authors":"Juliana Almario","doi":"10.1038/s41579-025-01215-5","DOIUrl":"https://doi.org/10.1038/s41579-025-01215-5","url":null,"abstract":"In this Journal Club, Juliana Almario revisits papers showing nutrient transfers between endophytic insect-parasitic fungi and plants, blurring the lines between mycorrhizal fungi and fungal root endophytes.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"276 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144677394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial peptides: structure, functions and translational applications 抗菌肽:结构、功能和翻译应用
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-11 DOI: 10.1038/s41579-025-01200-y
Nelson G. Oliveira Júnior, Camila M. Souza, Danieli F. Buccini, Marlon H. Cardoso, Octávio L. Franco
{"title":"Antimicrobial peptides: structure, functions and translational applications","authors":"Nelson G. Oliveira Júnior, Camila M. Souza, Danieli F. Buccini, Marlon H. Cardoso, Octávio L. Franco","doi":"10.1038/s41579-025-01200-y","DOIUrl":"https://doi.org/10.1038/s41579-025-01200-y","url":null,"abstract":"<p>Novel solutions to combat the rapid evolution of antimicrobial resistance in human and animal pathogens are urgently required. Antimicrobial peptides (AMPs) represent promising therapeutic molecules, as they exhibit structural nuances and distinct molecular targets against pathogenic microorganisms. In this Review, we explore the multifaceted structural nature of AMPs and advanced structural conformations, discuss the distinct mechanisms of action and explore novel targets. Additionally, we discuss resistance mechanisms, cross-resistance and innovative strategies for AMP design and optimization. We argue that gaining insight into novel AMP structural arrangements, targets and design optimization is crucial for the development of innovative therapies that can be translated into clinical as well as broader applications.</p>","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"88 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144603099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A molecular decoy for phage defence 噬菌体防御的分子诱饵
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-08 DOI: 10.1038/s41579-025-01212-8
Shimona Starling
{"title":"A molecular decoy for phage defence","authors":"Shimona Starling","doi":"10.1038/s41579-025-01212-8","DOIUrl":"https://doi.org/10.1038/s41579-025-01212-8","url":null,"abstract":"In a recent study, Jia and colleagues report that the DRT9 system in Escherichia coli synthesizes a long poly(A)-rich cDNA molecule with an antiphage function.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"10 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144578398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated action by individuals orchestrates infection through the division of labour 个人的协调行动通过分工协调感染
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-07 DOI: 10.1038/s41579-025-01210-w
Ka-Wai Ma
{"title":"Coordinated action by individuals orchestrates infection through the division of labour","authors":"Ka-Wai Ma","doi":"10.1038/s41579-025-01210-w","DOIUrl":"https://doi.org/10.1038/s41579-025-01210-w","url":null,"abstract":"In this Journal Club, Ka-Wai Ma discusses a paper that establishes that phenotypic heterogeneity and division of labour promote plant infection.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"149 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144568776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building climate-resilient agriculture through science and local action 通过科学和地方行动建设适应气候变化的农业
IF 88.1 1区 生物学
Nature Reviews Microbiology Pub Date : 2025-07-01 DOI: 10.1038/s41579-025-01207-5
Dilfuza Egamberdieva
{"title":"Building climate-resilient agriculture through science and local action","authors":"Dilfuza Egamberdieva","doi":"10.1038/s41579-025-01207-5","DOIUrl":"https://doi.org/10.1038/s41579-025-01207-5","url":null,"abstract":"As environmental and agricultural challenges intensify, raising awareness and developing innovative microbial solutions to improve crop yields, enhance soil quality, sequester carbon and reduce greenhouse gas emissions becomes not just a choice, but a mission, states Dilfuza Egamberdieva.","PeriodicalId":18838,"journal":{"name":"Nature Reviews Microbiology","volume":"195 1","pages":""},"PeriodicalIF":88.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144521059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信