Molecular Genetics and Genomics最新文献

筛选
英文 中文
Characterization of P-type H+-ATPase Pma1 inhibitors that extend chronological lifespan in fission yeast. 延长裂变酵母时间寿命的p型H+- atp酶Pma1抑制剂的特性。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-06-08 DOI: 10.1007/s00438-025-02264-4
Masahiro Tamura, Wakana Yamashita, Takahide Hibi, Shougo Inui, Koki Tanaka, Mami Ozako, Takafumi Shimasaki, Hokuto Ohtsuka, Masatoshi Shibuya, Yoshihiko Yamamoto, Satoshi Yokoshima, Hirofumi Aiba
{"title":"Characterization of P-type H<sup>+</sup>-ATPase Pma1 inhibitors that extend chronological lifespan in fission yeast.","authors":"Masahiro Tamura, Wakana Yamashita, Takahide Hibi, Shougo Inui, Koki Tanaka, Mami Ozako, Takafumi Shimasaki, Hokuto Ohtsuka, Masatoshi Shibuya, Yoshihiko Yamamoto, Satoshi Yokoshima, Hirofumi Aiba","doi":"10.1007/s00438-025-02264-4","DOIUrl":"https://doi.org/10.1007/s00438-025-02264-4","url":null,"abstract":"<p><p>Inhibition of the activity of Pma1, a widely conserved P-type proton exporting ATPase, has been shown to extend the chronological lifespan (CLS) in fission yeast Schizosaccharomyces pombe. To develop a specific inhibitor for Pma1 of S. pombe, we focused on Si01, a candidate inhibitor of Saccharomyces cerevisiae Pma1. First, we have established a method for synthesis of Si01 and then investigated its Pma1 inhibitory activity and lifespan extension effect in fission yeast. Second, we also synthesized derivatives of Si01 and determined the minimum structure required for inhibition of S. pombe Pma1. Here we showed that the inhibitory activity of Pma1 correlates with the effect of lifespan extension. Si01 reduced the activity of purified Pma1 protein and extended the CLS of not only fission yeast but also budding yeast. These results provide a molecular basis for understanding the mechanism of Pma1 inhibition and the potential for developing molecules that regulate lifespan.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"58"},"PeriodicalIF":2.3,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144248836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
lncBNIP3 knockdown enhances bovine myoblast proliferation by modulating DNA replication and cell cycle pathways. lnbnip3敲低通过调节DNA复制和细胞周期途径促进牛成肌细胞增殖。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-06-05 DOI: 10.1007/s00438-025-02260-8
Meng Yang, Yishan Pang, Sayed Haidar Abbas Raza, Juntao Guo, Jianfang Wang, Gongwei Zhang, Sameerh Alsahafi, Majid Al-Zahrani, Fuyuan Zuo, Wenzhen Zhang
{"title":"lncBNIP3 knockdown enhances bovine myoblast proliferation by modulating DNA replication and cell cycle pathways.","authors":"Meng Yang, Yishan Pang, Sayed Haidar Abbas Raza, Juntao Guo, Jianfang Wang, Gongwei Zhang, Sameerh Alsahafi, Majid Al-Zahrani, Fuyuan Zuo, Wenzhen Zhang","doi":"10.1007/s00438-025-02260-8","DOIUrl":"https://doi.org/10.1007/s00438-025-02260-8","url":null,"abstract":"<p><p>Myogenesis, a multistep process involving myoblast proliferation and differentiation, is critical for determining the economic value of beef cattle. While long noncoding RNAs (lncRNAs) are known to regulate myoblast proliferation, their specific mechanisms remain unclear. This study investigates the role of lncBNIP3 in bovine myoblast proliferation and examines the effects of its knockdown on cellular biological characteristics. Using quantitative real-time PCR (qRT-PCR), lncBNIP3 expression was observed to be higher in muscle tissues compared to other tissues in both 1-day-old and 24-month-old Qinchuan cattle. Knockdown of lncBNIP3 expression upregulated the mRNA levels of proliferation-related genes, as confirmed by qRT-PCR, and subsequently enhanced cellular proliferation, as demonstrated through EdU assays, flow cytometry, and CCK-8 analysis. Transcriptomic sequencing of myoblasts revealed that differentially expressed genes (DEGs) were significantly enriched in pathways associated with DNA replication and the cell cycle. Shared DEGs were primarily enriched in the minichromosome maintenance (MCM) gene family. Additionally, qRT-PCR and transcriptomic sequencing results revealed that the knockdown of lncBNIP3 expression significantly upregulated the mRNA levels of MCM family genes, including MCM2 and MCM3. Fluorescence activity assays further showed that lncBNIP3 knockdown significantly enhanced the promoter activities of MCM2 and MCM3. These findings suggest that interference with lncBNIP3 expression promotes the proliferation of bovine myoblasts, potentially through transcriptional regulation of the MCM gene family. This study provides novel insights into the regulatory functions of lncRNAs in muscle development.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"56"},"PeriodicalIF":2.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144225990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional characterization of sepsis in a LPS porcine model. LPS猪模型脓毒症的转录特征。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-06-05 DOI: 10.1007/s00438-025-02261-7
Ryan Neill
{"title":"Transcriptional characterization of sepsis in a LPS porcine model.","authors":"Ryan Neill","doi":"10.1007/s00438-025-02261-7","DOIUrl":"https://doi.org/10.1007/s00438-025-02261-7","url":null,"abstract":"<p><p>This paper identifies gene candidates differentially expressed in the porcine brain during sepsis, designed for eventual application in human clinical care for earlier detection of sepsis, as no known biomarkers currently exist. Sepsis associated encephalopathy (SAE) is characterized by dysregulated molecular pathways of the immune response impinging upon normal central nervous system (CNS) function and ultimately resulting in lasting cognitive and behavioral impairments. This study seeks to identify gene candidates that exhibit altered transcriptional expression during sepsis. Twelve Yorkshire pigs (n = 6 for saline control and lipopolysaccharide group) were utilized. LPS injection rate was 0.5-0.75 mL/kg resulting in death within 5-10 h. Brain tissue was collected and analyzed via bulk RNA-seq, and corresponding computational genomic analysis. Multiple genes demonstrated significant differential expression in the early septic brain, correlating with endothelial cell disruption, immune/inflammatory alterations, and potential alterations in microglia. Gene candidates downregulated include: OCLN, SLC19A3, and SLC52A3. Genes upregulated include: ICAM1, IRF1, CXCL10, and ZFP36. Specific gene candidates were identified as early changes in the septic brain that could be targets to prevent long-term cognitive and behavioral changes seen in sepsis survivors and establish a baseline diagnostic panel to interrogate in animal models with the goal of advancing treatments for human patients who experience sepsis.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"57"},"PeriodicalIF":2.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144225991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic insights into forensic features and population structure of the Hajong tribe in the Indian regions of Eastern Himalaya. 对喜马拉雅东部印度地区Hajong部落的法医特征和人口结构的遗传见解。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-06-05 DOI: 10.1007/s00438-025-02262-6
Avinash Vahinde, Penny H Niranjan, Gaurav Priyank, Chubi Niji, Vivek Sahajpal, Ajay S Rana, Deepika Bhandari, Satish Kumar, Sweta Nidhi, Abhishek Singh
{"title":"Genetic insights into forensic features and population structure of the Hajong tribe in the Indian regions of Eastern Himalaya.","authors":"Avinash Vahinde, Penny H Niranjan, Gaurav Priyank, Chubi Niji, Vivek Sahajpal, Ajay S Rana, Deepika Bhandari, Satish Kumar, Sweta Nidhi, Abhishek Singh","doi":"10.1007/s00438-025-02262-6","DOIUrl":"10.1007/s00438-025-02262-6","url":null,"abstract":"<p><p>India's northeastern region, particularly Meghalaya, a melting pot of diverse ethnic and racial groups that have been shaped by ancient migrations and the natural barriers posed by the Himalayas. The Hajong tribe, who live mainly in the Garo Hills of Meghalaya, reflect this diversity, sharing cultural similarities with the Tibetan and Bhutanese populations. Historically regarded as immigrants to Arunachal Pradesh, the Hajongs' genetic relationship with the greater Himalayan region makes them an ideal subject for estimation of genetic attributes. This study analyzed 23 autosomal STR markers to assess the genetic diversity of Hajong tribe with emphasis on forensic parameters. Among the 23 autosomal STR markers analyzed, several loci including SE33, FGA, and D18S51 exhibited high polymorphic information content and paternity index values, reflecting their strong forensic utility in the Hajong population. The combined Power of Exclusion (PE) and Power of Discrimination (PD) was 0.999999999 and 0.999999999, respectively, whereas the Total Paternity Index (TPI) and the Combined Matching Probability (PM) was 756014064.7 and 1.3214E-27. The fixation index, F = - 0.016 ± 0.014, showed very minimal intra-population differentiation. Genetic relationship assessment, including NJ dendrograms and MDS plots, revealed a close genetic affinity between Hajong and populations from Tibet, Bhutan, Nepal, and Myanmar, reflecting a shared ancestral relationship. STRUCTURE analysis revealed well-defined clustering, with limited admixture in the Hajong population, indicating genetic distinctiveness. This study reflects the genetic individuality of the Hajong tribe and its utility for forensic studies in kinship analysis. Such studies will, further, help in analyzing population dynamics in Northeast India by tracing the history of migration and interrelationships among Himalayan populations.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"55"},"PeriodicalIF":2.3,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144225989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic insights into the synergistic effects of nano-iron on yield, quality, and antioxidant defense in barley under salt stress. 盐胁迫下纳米铁对大麦产量、品质和抗氧化防御协同效应的遗传学研究。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-06-03 DOI: 10.1007/s00438-025-02254-6
Ahmad M Alqudah, Fatmah Ahmed Safhi, Samar G Thabet
{"title":"Genetic insights into the synergistic effects of nano-iron on yield, quality, and antioxidant defense in barley under salt stress.","authors":"Ahmad M Alqudah, Fatmah Ahmed Safhi, Samar G Thabet","doi":"10.1007/s00438-025-02254-6","DOIUrl":"https://doi.org/10.1007/s00438-025-02254-6","url":null,"abstract":"<p><p>Salt stress adversely impacts crop growth and development, resulting in stunted growth and diminished grain yield. Therefore, this study explores the synergetic effects of seed priming with iron nanoparticles (FeNPs) integrated with a genome-wide association study (GWAS) on the phenotypic, biochemical, and agronomic traits of 138 barley accessions under control, salinity stress, and seed iron priming treatments. A normal phenotypic distribution was observed across all accessions under the tested conditions, with significant natural phenotypic variation in response to the treatments. Remarkably, seed priming with FeNPs showed a significant enhancement in superoxide dismutase (SOD) activity and selective modulation of catalase (CAT) and glutathione reductase (GR) activities, indicating a targeted oxidative stress response. Compared to control and salinity stress conditions, priming with FeNPs showed substantial increases in all agronomic traits, including spike length (SL), number of spikelets per spike (NSS), number of grains per spike (NGS), weight of grains per spike (WGS), and thousand kernel weight (TKW), suggesting its potential to mitigate the adverse effects of salinity and promote better crop performance. Based on GWAS analysis, sixteen highly significant marker associations/candidate genes were detected to be associated with antioxidant components. Using quantitative real-time PCR analysis (RT-qPCR), FeNPs seed priming effectively modulates the plant's transcriptional response to salinity stress by balancing rapid gene activation with sustained stress adaptation. This approach mitigates excessive defense responses while promoting long-term stability through controlled upregulation of key genes, such as PP2C, Phosphotransferase, Terpene Synthase Putative, and RWP-RK. The findings support the potential of FeNPs as a biotechnological tool to enhance crop resilience and optimize agronomic performance under adverse environmental conditions.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"54"},"PeriodicalIF":2.3,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144209005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking genetic hotspots: GWAS reveals key nitrogen responsive genomic regions and key genes for root and yield traits in indica rice. 解锁遗传热点:GWAS揭示了籼稻根系和产量性状的关键氮响应基因组区域和关键基因。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-05-29 DOI: 10.1007/s00438-025-02249-3
Ankur Poudel, Sachin Phogat, Jeet Roy, Manish Ranjan Saini, K M Shivaprasad, Jayanthi Madhavan, Viswanathan Chinnusamy, K K Vinod, Amitha Mithra Sevanthi, Pranab Kumar Mandal
{"title":"Unlocking genetic hotspots: GWAS reveals key nitrogen responsive genomic regions and key genes for root and yield traits in indica rice.","authors":"Ankur Poudel, Sachin Phogat, Jeet Roy, Manish Ranjan Saini, K M Shivaprasad, Jayanthi Madhavan, Viswanathan Chinnusamy, K K Vinod, Amitha Mithra Sevanthi, Pranab Kumar Mandal","doi":"10.1007/s00438-025-02249-3","DOIUrl":"https://doi.org/10.1007/s00438-025-02249-3","url":null,"abstract":"<p><p>Nitrogen (N) induced environmental pollution from rice cultivation has resulted in undesired environmental impacts. To minimize the impacts, improvement of inherent NUE is very crucial in rice as it has the lowest NUE among the cereals. Though many family based and association based QTL studies have been reported earlier on NUE in rice, the reports on indica rice and precise evaluation of root parameters till physiological maturity is lacking. This study reports the identification of candidate genes and QTLs through a genome-wide association study (GWAS) involving 96 diverse indica rice genotypes, grown under contrasting N regimes in hydroponics till maturity. Genotyping was carried out using 80 K Affymetrix chip containing 47,686 curated SNP markers. The differential response of ten different N-responsive traits indicated separate breeding program for each N-regime. The population structure analysis revealed two sub-populations with varying degrees of admixtures in the association panel. The linkage disequilibrium (LD) analysis revealed a LD block of 108.4 kb. GWAS using MLM, FarmCPU, and BLINK could identify 568 marker-trait associations (MTAs) across different traits and N-conditions. Out of 24 common MTAs identified, 13 were novel with 156 candidate genes in the genomic region spanning the LD blocks. Yield and root-related MTAs were found to be the most prominent. N-responsive genes were found to be associated with other abiotic stresses like drought and salinity, as seen from the available literature. Candidate genes (OsWAK15, OsNIN8, OsHCT2, Os02 g0612900, Os02 g0613100, and Os02 g0612700) showed a similar expression pattern under N-stress in both N use- efficient and inefficient genotypes, which can be potential targets for modulating gene expression for N stress tolerance. These MTAs and candidate genes can serve as key resources for enhancement of NUE in rice upon functional validation.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"53"},"PeriodicalIF":2.3,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144174212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital. 探索从希腊一家医院恢复的肺炎克雷伯菌分离株的毒力特征。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-05-26 DOI: 10.1007/s00438-025-02258-2
Lazaros A Gagaletsios, Andreas Tagkalegkas, Ibrahim Bitar, Costas C Papagiannitsis
{"title":"Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital.","authors":"Lazaros A Gagaletsios, Andreas Tagkalegkas, Ibrahim Bitar, Costas C Papagiannitsis","doi":"10.1007/s00438-025-02258-2","DOIUrl":"https://doi.org/10.1007/s00438-025-02258-2","url":null,"abstract":"<p><p>The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"52"},"PeriodicalIF":2.3,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymorphic amino acid tract lengths in wine yeast coding microsatellites: different S. cerevisiae YPL009c and SCYOR267C alleles predict proteins with major primary sequence and structural alterations without apparent functional disruption. 酒酵母编码微卫星的多态氨基酸束长度:酿酒酵母YPL009c和SCYOR267C等位基因可预测蛋白质的主要一级序列和结构改变,但没有明显的功能破坏。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-05-25 DOI: 10.1007/s00438-025-02257-3
María Laura Raymond Eder, Agustina Caffaratti, Alberto Luis Rosa
{"title":"Polymorphic amino acid tract lengths in wine yeast coding microsatellites: different S. cerevisiae YPL009c and SCYOR267C alleles predict proteins with major primary sequence and structural alterations without apparent functional disruption.","authors":"María Laura Raymond Eder, Agustina Caffaratti, Alberto Luis Rosa","doi":"10.1007/s00438-025-02257-3","DOIUrl":"https://doi.org/10.1007/s00438-025-02257-3","url":null,"abstract":"<p><p>Yeast microsatellite loci consist of short tandem-repeated DNA sequences of variable length useful for strain differentiation, population genetics, and evolutionary biology. We have previously shown that, besides the variable number of their tandem-repeated motifs (TRM), allelic variants for some microsatellite loci of wine yeast species are also dependent on SNPs and/or indels flanking their TRM. In this work, we show that TRM for some microsatellite loci of the wine yeasts H. uvarum, S. cerevisiae, T. delbrueckii, B. bruxellensis, and M. guilliermondii are located within protein-coding sequences, most of them resulting in predicted polymorphic tracts of charged amino acid residues (i.e., E, Q, D, and N). In silico analyses predict that variations in the TRM lengths of S. cerevisiae microsatellites YPL009c and SCYOR267C, located within the coding sequences of the RQC2 and HRK1 genes, respectively, significantly disrupt the structure of the encoded proteins Rqc2 and Hrk1. Indigenous S. cerevisiae strains carrying TRM allelic variants that could potentially disrupt Rqc2 and Hrk1 function, do not exhibit the increased sensitivity to cycloheximide and acetic acid observed in ΔRQC2 and ΔHRK1 deletion strains, respectively. Interestingly, S. cerevisiae isolates carrying identical TRM alleles in either the RQC2 or HRK1 genes exhibit different growth behaviors in response to cycloheximide or acetic acid, suggesting that the genomic background contributes to the observed phenotypes. Taken together, our results suggest that coding microsatellites are common in wine yeast and may be located in regions of proteins that do not disrupt their function, and/or in proteins with a high degree of structural plasticity.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"51"},"PeriodicalIF":2.3,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144143011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The whole genome sequence of Cordyceps cicadae - an edible and potential medicinal fungus. 一种可食用和潜在药用真菌——蝉虫草的全基因组序列。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-05-22 DOI: 10.1007/s00438-025-02255-5
Yuwei Liu, Xueqian Li, Yiqi Meng, Yifan Wu, Yuting Jin, Xiaotong Ma, Wei Zhou, Yuchong Tan, Fu-Cheng Lin, Hongkai Wang
{"title":"The whole genome sequence of Cordyceps cicadae - an edible and potential medicinal fungus.","authors":"Yuwei Liu, Xueqian Li, Yiqi Meng, Yifan Wu, Yuting Jin, Xiaotong Ma, Wei Zhou, Yuchong Tan, Fu-Cheng Lin, Hongkai Wang","doi":"10.1007/s00438-025-02255-5","DOIUrl":"https://doi.org/10.1007/s00438-025-02255-5","url":null,"abstract":"<p><p>Cordyceps cicadae is an entomopathogenic fungus from the Cordyceps genus and a well-known edible mushroom with a long history of use in Asia. It contains many bioactive compounds beneficial to human health, giving it broad application prospects in medicine. In this study, we generated the complete genome sequence of C. cicadae strain 2-2 using a combination of Illumina, PacBio, and Hi-C sequencing technologies. This comprehensive genome sequence comprises 9 chromosomes, an N50 contig size of 4,798,690 bp, a GC content ratio of 52.65%, a total size of 34.60 Mb, and 8,019 predicted coding genes. Additionally, we conducted functional annotation of the genome, revealing that 63.2% of the genes were enriched in 50 GO terms and 87.8% in 387 KEGG pathways. We also identified 542 enzyme genes, noting that C. cicadae has a greater number of GHs compared to other fungi in the Cordyceps genus. Notably, NR database analysis revealed that 6,441 genes in C. cicadae are similar to those in Cordyceps fumosorosea, suggesting that C. cicadae may serve as a cost-effective alternative to this expensive traditional medicinal fungus. This study presents the first chromosome-level genome of the Cordyceps genus, providing a comprehensive analysis of the genetic composition and functions of C. cicadae and establishing a foundation for advancing research and development of Cordyceps fungi.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"50"},"PeriodicalIF":2.3,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144120283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HES1 in cancer: a key player in tumorigenesis and its prognostic significance. HES1在肿瘤发生中的关键作用及其预后意义
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2025-05-20 DOI: 10.1007/s00438-025-02259-1
Venkataraman Magesh, Ramya Sekar, Abdullah AlZahrani, Rajkapoor Balasubramanian, Salaheldin Abdelraouf Abdelsalam, Peramaiyan Rajendran
{"title":"HES1 in cancer: a key player in tumorigenesis and its prognostic significance.","authors":"Venkataraman Magesh, Ramya Sekar, Abdullah AlZahrani, Rajkapoor Balasubramanian, Salaheldin Abdelraouf Abdelsalam, Peramaiyan Rajendran","doi":"10.1007/s00438-025-02259-1","DOIUrl":"https://doi.org/10.1007/s00438-025-02259-1","url":null,"abstract":"<p><p>The dysregulation of transcriptional regulators is a critical feature in the progression of many malignancies. Hairy and enhancer of split homolog-1 (HES1), a member of the basic helix-loop-helix (bHLH) gene family, has emerged as a key player in tumorigenesis due to its regulatory roles in multiple cellular pathways. This review aims to systematically explore the relevance of HES1 in cancer development, emphasizing its activation through major signaling pathways such as Notch, Hedgehog, hypoxia, and Wnt, and its contribution to advanced tumor progression. Numerous studies have demonstrated that HES1 upregulates genes associated with stemness, proliferation, and metastasis, and its expression correlates with poor clinicopathological features, including enhanced tumor proliferation, self-renewal, migration, metastasis, and drug resistance. Furthermore, HES1 has been frequently identified as a downstream effector of critical oncogenic pathways, further consolidating its role in aggressive cancers. Based on current evidence, HES1 holds promise as both a prognostic biomarker and a potential therapeutic target in various lethal malignancies. A deeper understanding of HES1's molecular mechanisms could pave the way for the development of targeted interventions aimed at improving cancer outcomes.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"49"},"PeriodicalIF":2.3,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144111082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信