{"title":"lncBNIP3 knockdown enhances bovine myoblast proliferation by modulating DNA replication and cell cycle pathways.","authors":"Meng Yang, Yishan Pang, Sayed Haidar Abbas Raza, Juntao Guo, Jianfang Wang, Gongwei Zhang, Sameerh Alsahafi, Majid Al-Zahrani, Fuyuan Zuo, Wenzhen Zhang","doi":"10.1007/s00438-025-02260-8","DOIUrl":null,"url":null,"abstract":"<p><p>Myogenesis, a multistep process involving myoblast proliferation and differentiation, is critical for determining the economic value of beef cattle. While long noncoding RNAs (lncRNAs) are known to regulate myoblast proliferation, their specific mechanisms remain unclear. This study investigates the role of lncBNIP3 in bovine myoblast proliferation and examines the effects of its knockdown on cellular biological characteristics. Using quantitative real-time PCR (qRT-PCR), lncBNIP3 expression was observed to be higher in muscle tissues compared to other tissues in both 1-day-old and 24-month-old Qinchuan cattle. Knockdown of lncBNIP3 expression upregulated the mRNA levels of proliferation-related genes, as confirmed by qRT-PCR, and subsequently enhanced cellular proliferation, as demonstrated through EdU assays, flow cytometry, and CCK-8 analysis. Transcriptomic sequencing of myoblasts revealed that differentially expressed genes (DEGs) were significantly enriched in pathways associated with DNA replication and the cell cycle. Shared DEGs were primarily enriched in the minichromosome maintenance (MCM) gene family. Additionally, qRT-PCR and transcriptomic sequencing results revealed that the knockdown of lncBNIP3 expression significantly upregulated the mRNA levels of MCM family genes, including MCM2 and MCM3. Fluorescence activity assays further showed that lncBNIP3 knockdown significantly enhanced the promoter activities of MCM2 and MCM3. These findings suggest that interference with lncBNIP3 expression promotes the proliferation of bovine myoblasts, potentially through transcriptional regulation of the MCM gene family. This study provides novel insights into the regulatory functions of lncRNAs in muscle development.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"56"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02260-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myogenesis, a multistep process involving myoblast proliferation and differentiation, is critical for determining the economic value of beef cattle. While long noncoding RNAs (lncRNAs) are known to regulate myoblast proliferation, their specific mechanisms remain unclear. This study investigates the role of lncBNIP3 in bovine myoblast proliferation and examines the effects of its knockdown on cellular biological characteristics. Using quantitative real-time PCR (qRT-PCR), lncBNIP3 expression was observed to be higher in muscle tissues compared to other tissues in both 1-day-old and 24-month-old Qinchuan cattle. Knockdown of lncBNIP3 expression upregulated the mRNA levels of proliferation-related genes, as confirmed by qRT-PCR, and subsequently enhanced cellular proliferation, as demonstrated through EdU assays, flow cytometry, and CCK-8 analysis. Transcriptomic sequencing of myoblasts revealed that differentially expressed genes (DEGs) were significantly enriched in pathways associated with DNA replication and the cell cycle. Shared DEGs were primarily enriched in the minichromosome maintenance (MCM) gene family. Additionally, qRT-PCR and transcriptomic sequencing results revealed that the knockdown of lncBNIP3 expression significantly upregulated the mRNA levels of MCM family genes, including MCM2 and MCM3. Fluorescence activity assays further showed that lncBNIP3 knockdown significantly enhanced the promoter activities of MCM2 and MCM3. These findings suggest that interference with lncBNIP3 expression promotes the proliferation of bovine myoblasts, potentially through transcriptional regulation of the MCM gene family. This study provides novel insights into the regulatory functions of lncRNAs in muscle development.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.