Molecular Genetics and Genomics最新文献

筛选
英文 中文
Research progress of nanog gene in fish. 鱼类纳米基因的研究进展。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-09-24 DOI: 10.1007/s00438-024-02182-x
Miao Yu, Fangyuan Wang, Huihui Gang, Chuanhu Liu
{"title":"Research progress of nanog gene in fish.","authors":"Miao Yu, Fangyuan Wang, Huihui Gang, Chuanhu Liu","doi":"10.1007/s00438-024-02182-x","DOIUrl":"https://doi.org/10.1007/s00438-024-02182-x","url":null,"abstract":"<p><p>Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic investigation of clear cell renal cell carcinoma using meta-analysis and systems biology approaches 利用荟萃分析和系统生物学方法对透明细胞肾细胞癌进行系统研究
IF 3.1 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-09-16 DOI: 10.1007/s00438-024-02180-z
Babak Sokouti
{"title":"A systematic investigation of clear cell renal cell carcinoma using meta-analysis and systems biology approaches","authors":"Babak Sokouti","doi":"10.1007/s00438-024-02180-z","DOIUrl":"https://doi.org/10.1007/s00438-024-02180-z","url":null,"abstract":"<p>Renal cell carcinoma with clear cells (ccRCC) is the most frequent kind; it accounts for almost 70% of all kidney cancers. A primary objective of current research was to find genes that may be used in ccRCC gene therapy to understand better the molecular pathways underlying the disease. Based on PubMed microarray searches and meta-analyses, we compared overall survival and recurrence-free survival rates in ccRCC patients with those in healthy samples. The technique was followed by a KEGG pathway and Gene Ontology (GO) function analyses, both performed in conjunction with the approach. Tumor immune estimate and multi-gene biomarkers validation for clinical outcomes were performed at the molecular and clinical cohort levels. Our analysis included fourteen GEO datasets based on inclusion and exclusion criteria. A meta-analysis procedure, network construction using PPIs, and four significant gene identification standard algorithms indicated that 11 genes had the most important differences. Ten genes were upregulated, and one was downregulated in the study. In order to analyze RFS and OS survival rates, 11 genes expressed in the GEPIA2 database were examined. Nearly nine of eleven significant genes have been found to beinvolved in tumor immunity. Furthermore, it was found that mRNA expression levels of these genes were significantly correlated with experimental literature studies on ccRCCs, which explained these findings. This study identified eleven gene panels associated with ccRCC growth and metastasis, as well as their immune system infiltration.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic analysis reveals oxidative stress-related signature and molecular subtypes in cholangio carcinoma. 转录组分析揭示了胆管癌的氧化应激相关特征和分子亚型。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-09-06 DOI: 10.1007/s00438-024-02170-1
Zichao Wu
{"title":"Transcriptomic analysis reveals oxidative stress-related signature and molecular subtypes in cholangio carcinoma.","authors":"Zichao Wu","doi":"10.1007/s00438-024-02170-1","DOIUrl":"https://doi.org/10.1007/s00438-024-02170-1","url":null,"abstract":"<p><p>Cholangiocarcinoma (CCA) is a heterogeneous and aggressive malignancy with limited therapeutic options and poor prognosis. The identification of reliable prognostic biomarkers and a deeper understanding of the molecular subtypes are critical for the development of targeted therapies and improvement of patient outcomes. This study aims to uncover oxidative stress-related genes (ORGs) in CCA and develop a prognostic risk model using comprehensive transcriptomic analysis from The Cancer Genome Atlas (TCGA). Through LASSO regression analysis, we identified prognosis-related ORGs and constructed a prognostic signature consisting of six ORGs. This signature demonstrated strong predictive performance in survival analysis and ROC curve assessment. Functional enrichment and GSEA analyses revealed significant enrichment of immune-related pathways among different risk groups. GSVA analysis indicated reduced activity in inflammation and oxidative stress pathways in the high-risk subgroup, and xCell results showed lower immune cell infiltration levels in this group. Additionally, immune checkpoint genes and immune-related pathways were downregulated in the high-risk subgroup. Our research has developed a unique prognostic model focusing on oxidative stress, enabling accurate forecasting of patient outcomes and providing crucial insights and recommendations for the prognosis of individuals with CCA. Future studies should aim to validate these findings in clinical settings and further explore therapeutic targets within oxidative stress pathways.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population. 发现碳水化合物代谢中的新型调节变异:印度人群血糖特征的多组学综合研究。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-09-04 DOI: 10.1007/s00438-024-02176-9
Janaki M Nair, Khushdeep Bandesh, Anil K Giri, Gauri Prasad, Donaka Rajashekhar, Punam Jha, Analabha Basu, Nikhil Tandon, Dwaipayan Bharadwaj
{"title":"Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population.","authors":"Janaki M Nair, Khushdeep Bandesh, Anil K Giri, Gauri Prasad, Donaka Rajashekhar, Punam Jha, Analabha Basu, Nikhil Tandon, Dwaipayan Bharadwaj","doi":"10.1007/s00438-024-02176-9","DOIUrl":"https://doi.org/10.1007/s00438-024-02176-9","url":null,"abstract":"<p><p>Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A homozygous missense variant in YTHDC2 induces azoospermia in two siblings. YTHDC2的同源错义变异导致两个兄弟姐妹出现无精子症。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-09-02 DOI: 10.1007/s00438-024-02168-9
Shixiong Tian, Muhammad Faheem, Humayoon Shafique Satti, Jianqiu Xiao, Feng Zhang, Tahir Naeem Khan, Chunyu Liu
{"title":"A homozygous missense variant in YTHDC2 induces azoospermia in two siblings.","authors":"Shixiong Tian, Muhammad Faheem, Humayoon Shafique Satti, Jianqiu Xiao, Feng Zhang, Tahir Naeem Khan, Chunyu Liu","doi":"10.1007/s00438-024-02168-9","DOIUrl":"10.1007/s00438-024-02168-9","url":null,"abstract":"<p><p>Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg<sup>2+</sup> binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanism of INO80D involved in chromatin remodeling regulating spermatogenesis in Chinese mitten crab (Eriocheir sinensis). INO80D参与染色质重塑调控中华绒螯蟹精子发生的机制
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-08-30 DOI: 10.1007/s00438-024-02177-8
Yinyin Mo, Lishuang Sun, Shu Li, Lvjing Luo, Huiting Liu, Shi Huang, Zhengyu Chen, Genliang Li
{"title":"The mechanism of INO80D involved in chromatin remodeling regulating spermatogenesis in Chinese mitten crab (Eriocheir sinensis).","authors":"Yinyin Mo, Lishuang Sun, Shu Li, Lvjing Luo, Huiting Liu, Shi Huang, Zhengyu Chen, Genliang Li","doi":"10.1007/s00438-024-02177-8","DOIUrl":"https://doi.org/10.1007/s00438-024-02177-8","url":null,"abstract":"<p><p>The INO80D protein, a component of the INO80 chromatin remodeling complex, plays a pivotal role in chromatin remodeling, gene expression, and DNA repair within mammalian sperm. In contrast to the condensed nuclear structure of mammalian sperm, Chinese mitten crab, Eriocheir sinensis, exhibits a distinctively decondensed sperm nucleus. The distribution and function of INO80D during the E. sinensis spermatogenesis were previously enigmatic. Our research endeavored to elucidate the distribution and function of INO80D, thereby enhancing our comprehension of sperm decondensation and the process of spermatogenesis in this species. Employing transcriptome sequencing, RT-qPCR, western blot analysis, and immunofluorescence techniques, we observed a pronounced upregulation of INO80D in the adult E. sinensis in comparison to the juvenile. The protein predominantly resides in the cellular nucleus, with high levels in spermatogonia and spermatocytes, less in stage I and III spermatids, and lowest in mature sperm. The results indicated that INO80D is initially instrumental in chromatin decondensation to facilitate gene accessibility and DNA repair during the early phases of spermatogenesis. Its role subsequently shifts to maintaining decondensed chromatin stability and genetic integrity during spermiogenesis. The sustained presence of INO80D during spermiogenesis is essential for the ultimate maturation of the decondensed sperm nucleus, imperative for preserving the unique decondensed state and the protection of genetic material in E. sinensis. Our study concludes that INO80D exerts a multifaceted influence on the spermatogenesis of E. sinensis, impacting chromatin decondensation, genetic integrity, and the regulation of early gene expression. This understanding could potentially improve crab breeding in aquaculture.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of pathogenicity-deficient Penicillium italicum mutants established by Agrobacterium tumefaciens-mediated transformation. 通过农杆菌介导的转化筛选致病性缺失的意大利青霉突变体。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-08-28 DOI: 10.1007/s00438-024-02171-0
Meihong Zhang, Shuzhen Yang, Qianru Li, Meng Wang, Litao Peng
{"title":"Screening of pathogenicity-deficient Penicillium italicum mutants established by Agrobacterium tumefaciens-mediated transformation.","authors":"Meihong Zhang, Shuzhen Yang, Qianru Li, Meng Wang, Litao Peng","doi":"10.1007/s00438-024-02171-0","DOIUrl":"https://doi.org/10.1007/s00438-024-02171-0","url":null,"abstract":"<p><p>Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic variability of 23 autosomal STRs in Austroasiatic-speaking populations from Thailand. 泰国讲奥斯特拉西亚语的人群中 23 个常染色体 STR 的遗传变异。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-08-22 DOI: 10.1007/s00438-024-02175-w
Nonglak Prakhun, Kanha Muisuk, Jatupol Kampuansai, Metawee Srikummool, Pittayawat Pittayaporn, Sukhum Ruangchai, Wibhu Kutanan, Nisarat Tungpairojwong
{"title":"Genetic variability of 23 autosomal STRs in Austroasiatic-speaking populations from Thailand.","authors":"Nonglak Prakhun, Kanha Muisuk, Jatupol Kampuansai, Metawee Srikummool, Pittayawat Pittayaporn, Sukhum Ruangchai, Wibhu Kutanan, Nisarat Tungpairojwong","doi":"10.1007/s00438-024-02175-w","DOIUrl":"https://doi.org/10.1007/s00438-024-02175-w","url":null,"abstract":"<p><p>Austroasiatic (AA) speakers constitute around 4% of the population of Thailand, while the majority (89.4%) speak Kra-Dai (KD) languages. Previous forensic and population genetic studies in various Thai populations have employed a limited number of short tandem repeats (STRs). This study aims to expand the investigation of the genetic makeup of AA populations in Thailand and their relationship to KD populations using a larger number of autosomal STRs with the VeriFiler™ Plus PCR Amplification Kit. We generated 593 new genotypes from AA-speaking groups and combined them with previously reported data from AA and KD groups. A total of 1,129 genotypes across 23 STR loci were used to construct the largest allelic frequency profile for Thai and Lao populations. However, several loci deviated from Hardy-Weinberg equilibrium, likely due to the reduced genetic diversity in some highland populations, which should be considered in forensic investigations. Beyond forensic applications, our findings reveal genetic differences between AA-speaking groups in Northern and Northeastern Thailand. The AA groups from Northeastern Thailand exhibit greater genetic homogeneity and diversity, likely due to population interactions. In contrast, reduced diversity and increased heterogeneity in AA groups from Northern Thailand are possibly driven by genetic drift and cultural and geographic isolation. In conclusion, we emphasize the usefulness of increasing the number of autosomal STRs in forensic and anthropological genetic studies. Additional Y-STR and X-STR data from various AA-speaking groups in Thailand would further enhance and strengthen forensic STR databases in the region.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confirming the enzymatic activity and neurodevelopmental trajectory of PYCR1 mutation in one child with autosomal-recessive cutis laxa type 2. 证实一名常染色体隐性切口松弛症 2 型患儿体内PYCR1 基因突变的酶活性和神经发育轨迹。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-08-22 DOI: 10.1007/s00438-024-02173-y
Shaofang Shangguan, Xueyuan Zhang, Yangyang Ge, Ye Han, Ling Xiao, Yu Zhang, Hua Xie, Xiaoli Chen, Xiaoyan Wang
{"title":"Confirming the enzymatic activity and neurodevelopmental trajectory of PYCR1 mutation in one child with autosomal-recessive cutis laxa type 2.","authors":"Shaofang Shangguan, Xueyuan Zhang, Yangyang Ge, Ye Han, Ling Xiao, Yu Zhang, Hua Xie, Xiaoli Chen, Xiaoyan Wang","doi":"10.1007/s00438-024-02173-y","DOIUrl":"10.1007/s00438-024-02173-y","url":null,"abstract":"<p><p>Autosomal-recessive cutis laxa type 2 (ARCL2) is a rare genetic disorder caused by pyrroline-5-carboxylate reductase 1 (PYCR1) mutations and characterized by loose and sagging skin, typical facial features, intrauterine growth retardation, and developmental delay. To study the effect of PYCR1 mutations on protein function and clinical features, we identified a homozygous missense mutation c.559G > A (p.Ala187Thr) in PYCR1 in a Chinese child with typical clinical features, especially severe developmental delays. The three-dimensional (3D) model showed the modification of the hydrogen bonds produce a misfolding in the mutant PYCR1 protein. Mutagenesis and enzyme assay study revealed decreased activity of the mutant protein in vitro, indicating that this mutation impairs PYCR1 function. Our findings confirmed abnormal enzymatic activity and neurodevelopmental trajectory of this PYCR1 mutation.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genotypic spectrum of ABCA4-associated retinal degenerations in 211 unrelated Mexican patients: identification of 22 novel disease-causing variants. 211 名无血缘关系的墨西哥患者 ABCA4 相关视网膜变性的基因型谱:鉴定出 22 个新型致病变体。
IF 2.3 3区 生物学
Molecular Genetics and Genomics Pub Date : 2024-08-20 DOI: 10.1007/s00438-024-02174-x
Oscar F Chacon-Camacho, Nancy Xilotl-de Jesús, Ernesto Calderón-Martínez, Vianey Ordoñez-Labastida, M Isabel Neria-Gonzalez, Rocío Villafuerte-de la Cruz, Augusto Martinez-Rojas, Juan Carlos Zenteno
{"title":"Genotypic spectrum of ABCA4-associated retinal degenerations in 211 unrelated Mexican patients: identification of 22 novel disease-causing variants.","authors":"Oscar F Chacon-Camacho, Nancy Xilotl-de Jesús, Ernesto Calderón-Martínez, Vianey Ordoñez-Labastida, M Isabel Neria-Gonzalez, Rocío Villafuerte-de la Cruz, Augusto Martinez-Rojas, Juan Carlos Zenteno","doi":"10.1007/s00438-024-02174-x","DOIUrl":"10.1007/s00438-024-02174-x","url":null,"abstract":"<p><p>The purpose of this study was to analyze and molecularly describe the largest group of patients with ABCA4-associated retinal degeneration in Latin America. Pathogenic variants in ABCA4, a member of the ATP Binding Cassette (ABC) transporters superfamily, is one of the most common causes of inherited visual deficiency in humans. Retinal phenotypes associated with genetic defects in ABCA4 are collectively known as ABCA4-associated retinal degenerations (ABCA4R), a group of recessively inherited disorders associated with a high allelic heterogeneity. While large groups of Caucasian and Asiatic individuals suffering from ABCA4R have been well characterized, molecular information from certain ethnic groups is limited or unavailable, precluding a more realistic knowledge of ABCA4-related mutational profile worldwide. In this study, we describe the molecular findings of a large group of 211 ABCA4R index cases from Mexico. Genotyping was performed using either next generation sequencing (NGS) of a retinal dystrophy genes panel or exome. ABCA4 targeted mutation testing was applied to a subgroup of subjects in whom founder mutations were suspected. A total of 128 different ABCA4 pathogenic variants were identified, including 22 previously unpublished variants. The most common type of genetic variation was single nucleotide substitutions which occurred in 92.7% (408/440 alleles). According to the predicted protein effect, the most frequent variant type was missense, occurring in 83.5% of disease-causing alleles (368/440). Mutations such as p.Ala1773Val are fully demonstrated as a founder effect in native inhabitants of certain regions of Mexico. This study also gives us certain indications of other founder effects that need to be further studied in the near future. This is the largest molecularly characterized ABCA4R Latin American cohort, and our results supports the value of conducting genetic screening in underrepresented populations for a better knowledge of the mutational profile leading to monogenic diseases.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信