Genomic analysis of terpene synthase family and characterization of ent-kaurene synthase in Chenopodium quinoa.

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shuaibing Tian, Liping Wang, Lijun Liu, Xiaoyu Sha, Jine Wu, Jingye Fu, Qiang Wang
{"title":"Genomic analysis of terpene synthase family and characterization of ent-kaurene synthase in Chenopodium quinoa.","authors":"Shuaibing Tian, Liping Wang, Lijun Liu, Xiaoyu Sha, Jine Wu, Jingye Fu, Qiang Wang","doi":"10.1007/s00438-025-02269-z","DOIUrl":null,"url":null,"abstract":"<p><p>Terpenoids produced in plants play important roles in growth, development and response to environmental stimuli. Terpene synthases are responsible for the terpene backbone formation of terpenoid metabolites. In this study, fifty-one terpene synthase genes were identified in the quinoa genome and categorized into seven sub-families through bioinformatics and phylogenetic analysis. Gene structures, conserved motifs and cis-elements in promoters were also analyzed for these CqTPSs, as well as prediction of secondary and tertiary protein structure. Four terpene synthase genes in the TPS-e sub-family were further cloned for functional characterization. Among which, CqTPS49 and CqTPS51 were detected to react with ent-CPP to generate ent-kaurene, the intermediate of gibberellin biosynthesis, subsequently name as CqTPS49/KS1 and CqTPS51/KS2, respectively. CqTPS47 and CqTPS48 reacted with syn-CPP to form diterpene products, which needs to be identified with chemical structure characterization. All four tested CqTPSs were found to be localized in the chloroplast, consistent with their functions as diterpene synthease. Expression patterns analysis in different tissues revealed that CqTPS49/KS1 and CqTPS51/KS2 are mainly expressed in the active growing buds, suggesting involvement in gibberellic acid metabolism. This study identified the terpene synthase gene family in quinoa and provided the basis for further functional characterization of terpenoid metabolism.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"66"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02269-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Terpenoids produced in plants play important roles in growth, development and response to environmental stimuli. Terpene synthases are responsible for the terpene backbone formation of terpenoid metabolites. In this study, fifty-one terpene synthase genes were identified in the quinoa genome and categorized into seven sub-families through bioinformatics and phylogenetic analysis. Gene structures, conserved motifs and cis-elements in promoters were also analyzed for these CqTPSs, as well as prediction of secondary and tertiary protein structure. Four terpene synthase genes in the TPS-e sub-family were further cloned for functional characterization. Among which, CqTPS49 and CqTPS51 were detected to react with ent-CPP to generate ent-kaurene, the intermediate of gibberellin biosynthesis, subsequently name as CqTPS49/KS1 and CqTPS51/KS2, respectively. CqTPS47 and CqTPS48 reacted with syn-CPP to form diterpene products, which needs to be identified with chemical structure characterization. All four tested CqTPSs were found to be localized in the chloroplast, consistent with their functions as diterpene synthease. Expression patterns analysis in different tissues revealed that CqTPS49/KS1 and CqTPS51/KS2 are mainly expressed in the active growing buds, suggesting involvement in gibberellic acid metabolism. This study identified the terpene synthase gene family in quinoa and provided the basis for further functional characterization of terpenoid metabolism.

藜麦萜类合成酶家族的基因组分析及对戊烯合成酶的鉴定。
萜类化合物在植物的生长发育和对环境刺激的反应中起着重要作用。萜烯合成酶负责萜类代谢产物的萜烯骨架形成。本研究通过生物信息学和系统发育分析,在藜麦基因组中鉴定出51个萜烯合成酶基因,并将其划分为7个亚家族。分析了这些cqtps的基因结构、保守基序和启动子中的顺式元件,并对其二级和三级蛋白结构进行了预测。进一步克隆TPS-e亚家族中的4个萜烯合成酶基因进行功能鉴定。其中,检测到CqTPS49和CqTPS51与ent-CPP反应生成赤霉素生物合成中间体-烯,分别命名为CqTPS49/KS1和CqTPS51/KS2。CqTPS47和CqTPS48与syn-CPP反应生成二萜产物,需进行化学结构表征鉴定。所有四种测试的cqtps都被发现定位于叶绿体中,与它们的二萜合成酶功能一致。不同组织的表达模式分析显示,CqTPS49/KS1和CqTPS51/KS2主要在活跃生长芽中表达,可能与赤霉素酸代谢有关。本研究鉴定了藜麦萜类合成酶基因家族,为进一步表征藜麦萜类代谢功能提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信