对刺参性腺转录组的破译揭示了刺参性别分化和配子发生的circRNA-miRNA-mRNA调控网络。

IF 2.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ziming Li, Xinyue Tang, Xinghai Liu, Jing Huo, Ying Guo, Yujia Yang
{"title":"对刺参性腺转录组的破译揭示了刺参性别分化和配子发生的circRNA-miRNA-mRNA调控网络。","authors":"Ziming Li, Xinyue Tang, Xinghai Liu, Jing Huo, Ying Guo, Yujia Yang","doi":"10.1007/s00438-025-02276-0","DOIUrl":null,"url":null,"abstract":"<p><p>As stable and conserved non-coding RNAs, circular RNAs (circRNAs) play vital roles in gene regulation, particularly in reproductive development. However, their functions in marine invertebrate gonadal differentiation remain largely unexplored. Understanding the molecular mechanisms of sexual differentiation and gonadal development is essential for advancing reproductive biology in marine invertebrates. The sea cucumber Apostichopus japonicus is a vital species in economic aquaculture. Before the breeding season, A. japonicus exhibits minimal sexual dimorphism, significantly impeding breeding efficiency and posing challenges for the development of superior germplasm resources. Investigating the role of circRNAs in mature A. japonicus will enhance our understanding of its specific molecular mechanism during sexual differentiation and gonadal reproduction. In this study, we constructed differential expression profiles of circRNAs. A total of 18,121 circRNAs were identified, distributed across the 23 chromosomes of A. japonicus. 584 circRNAs exhibited significant expression differences, with 296 up-regulated and 288 down-regulated. Through GO enrichment and KEGG pathway analysis of these circRNAs, two pathways related to sexual differentiation were identified: the AMPK signaling pathway and the TGF-β signaling pathway, which may regulate sexual differentiation by influencing sex hormone synthesis. Additionally, several genes, such as smad3, smoc2, and ppp2r1a may play critical regulatory roles in the development and activity of germ cells. Our study elucidates the molecular regulatory roles of circRNAs in the sexual differentiation and gonadal development of A. japonicus. Given its evolutionary position as the closest phylum to chordates, the present study on A. japonicus provides valuable insights into the non-coding RNA resource for marine invertebrates.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"70"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering gonadal transcriptome reveals circRNA-miRNA-mRNA regulatory network involved in sex differentiation and gametogenesis of Apostichopus japonicus.\",\"authors\":\"Ziming Li, Xinyue Tang, Xinghai Liu, Jing Huo, Ying Guo, Yujia Yang\",\"doi\":\"10.1007/s00438-025-02276-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As stable and conserved non-coding RNAs, circular RNAs (circRNAs) play vital roles in gene regulation, particularly in reproductive development. However, their functions in marine invertebrate gonadal differentiation remain largely unexplored. Understanding the molecular mechanisms of sexual differentiation and gonadal development is essential for advancing reproductive biology in marine invertebrates. The sea cucumber Apostichopus japonicus is a vital species in economic aquaculture. Before the breeding season, A. japonicus exhibits minimal sexual dimorphism, significantly impeding breeding efficiency and posing challenges for the development of superior germplasm resources. Investigating the role of circRNAs in mature A. japonicus will enhance our understanding of its specific molecular mechanism during sexual differentiation and gonadal reproduction. In this study, we constructed differential expression profiles of circRNAs. A total of 18,121 circRNAs were identified, distributed across the 23 chromosomes of A. japonicus. 584 circRNAs exhibited significant expression differences, with 296 up-regulated and 288 down-regulated. Through GO enrichment and KEGG pathway analysis of these circRNAs, two pathways related to sexual differentiation were identified: the AMPK signaling pathway and the TGF-β signaling pathway, which may regulate sexual differentiation by influencing sex hormone synthesis. Additionally, several genes, such as smad3, smoc2, and ppp2r1a may play critical regulatory roles in the development and activity of germ cells. Our study elucidates the molecular regulatory roles of circRNAs in the sexual differentiation and gonadal development of A. japonicus. Given its evolutionary position as the closest phylum to chordates, the present study on A. japonicus provides valuable insights into the non-coding RNA resource for marine invertebrates.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"300 1\",\"pages\":\"70\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-025-02276-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02276-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环状rna (circular rna, circRNAs)是一种稳定且保守的非编码rna,在基因调控,特别是生殖发育中发挥着重要作用。然而,它们在海洋无脊椎动物性腺分化中的功能仍未得到充分研究。了解性分化和性腺发育的分子机制对推进海洋无脊椎动物生殖生物学研究具有重要意义。Apostichopus japonicus海参是经济养殖中的重要品种。在繁殖季节之前,日本刺参的性别二型现象极少,严重影响了育种效率,对优势种质资源的开发构成了挑战。研究circRNAs在成熟日本刺参中所起的作用,将有助于我们进一步了解其在性分化和性腺生殖过程中的特定分子机制。在这项研究中,我们构建了circrna的差异表达谱。共鉴定出18121个环状rna,分布在日本刺参的23条染色体上。584个circrna表达差异显著,其中上调296个,下调288个。通过对这些circrna进行GO富集和KEGG通路分析,鉴定出与性别分化相关的两条通路:AMPK信号通路和TGF-β信号通路,它们可能通过影响性激素合成来调节性别分化。此外,一些基因,如smad3、smoc2和ppp2r1a可能在生殖细胞的发育和活性中发挥关键的调节作用。我们的研究阐明了环状rna在刺参性别分化和性腺发育中的分子调控作用。鉴于日本刺参是最接近脊索动物的门,本研究对海洋无脊椎动物的非编码RNA资源提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciphering gonadal transcriptome reveals circRNA-miRNA-mRNA regulatory network involved in sex differentiation and gametogenesis of Apostichopus japonicus.

As stable and conserved non-coding RNAs, circular RNAs (circRNAs) play vital roles in gene regulation, particularly in reproductive development. However, their functions in marine invertebrate gonadal differentiation remain largely unexplored. Understanding the molecular mechanisms of sexual differentiation and gonadal development is essential for advancing reproductive biology in marine invertebrates. The sea cucumber Apostichopus japonicus is a vital species in economic aquaculture. Before the breeding season, A. japonicus exhibits minimal sexual dimorphism, significantly impeding breeding efficiency and posing challenges for the development of superior germplasm resources. Investigating the role of circRNAs in mature A. japonicus will enhance our understanding of its specific molecular mechanism during sexual differentiation and gonadal reproduction. In this study, we constructed differential expression profiles of circRNAs. A total of 18,121 circRNAs were identified, distributed across the 23 chromosomes of A. japonicus. 584 circRNAs exhibited significant expression differences, with 296 up-regulated and 288 down-regulated. Through GO enrichment and KEGG pathway analysis of these circRNAs, two pathways related to sexual differentiation were identified: the AMPK signaling pathway and the TGF-β signaling pathway, which may regulate sexual differentiation by influencing sex hormone synthesis. Additionally, several genes, such as smad3, smoc2, and ppp2r1a may play critical regulatory roles in the development and activity of germ cells. Our study elucidates the molecular regulatory roles of circRNAs in the sexual differentiation and gonadal development of A. japonicus. Given its evolutionary position as the closest phylum to chordates, the present study on A. japonicus provides valuable insights into the non-coding RNA resource for marine invertebrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信