Hari Shankar Gadri, Sarbani Roy, Saneha Devi, Jigmet Chuskit Angmo, Vikas Sharma, Mohammed Asif Chowdhary, Rohini Dwivedi, Pankaj Bhardwaj
{"title":"Chromosome scale assembly unveils genomic structure and gene families of Calotropis procera.","authors":"Hari Shankar Gadri, Sarbani Roy, Saneha Devi, Jigmet Chuskit Angmo, Vikas Sharma, Mohammed Asif Chowdhary, Rohini Dwivedi, Pankaj Bhardwaj","doi":"10.1007/s00438-025-02270-6","DOIUrl":null,"url":null,"abstract":"<p><p>Calotropis procera (Akra, 2n = 22) is a fast-growing, fiber-producing, and climate-resilient, yet underexplored for domestication. The significant step forward in the domestication of this invaluable plant species marks the development of a reference genome. The study reveals a chromosome-scale genome that anchors 11 chromosomes, with a reference assembly spanning approximately 202.83 Mb. It contains few repetitive sequences, accounting for only 5% of the total genome. C. procera display a significant pair-orthology dN/dS ratio of nearly 0.2 to 0.25, indicating strong conservation, purifying selection, and resistance to harsh conditions. C. procera experienced phylogenetic relations with familiar sister genera divergent around 38.5 million years ago. The chromosomal structural rearrangement endured alterations throughout divergence due to a synteny interaction with the genomes of A. syriaca. The findings delve into the role of gene families in the adaptive evolutionary processes of C. procera. The study enhanced our comprehension of genome biology, the influence of gene families on adaptation. The genome research is invaluable and will significantly influence the future domestication of C. procera.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"64"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02270-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Calotropis procera (Akra, 2n = 22) is a fast-growing, fiber-producing, and climate-resilient, yet underexplored for domestication. The significant step forward in the domestication of this invaluable plant species marks the development of a reference genome. The study reveals a chromosome-scale genome that anchors 11 chromosomes, with a reference assembly spanning approximately 202.83 Mb. It contains few repetitive sequences, accounting for only 5% of the total genome. C. procera display a significant pair-orthology dN/dS ratio of nearly 0.2 to 0.25, indicating strong conservation, purifying selection, and resistance to harsh conditions. C. procera experienced phylogenetic relations with familiar sister genera divergent around 38.5 million years ago. The chromosomal structural rearrangement endured alterations throughout divergence due to a synteny interaction with the genomes of A. syriaca. The findings delve into the role of gene families in the adaptive evolutionary processes of C. procera. The study enhanced our comprehension of genome biology, the influence of gene families on adaptation. The genome research is invaluable and will significantly influence the future domestication of C. procera.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.