{"title":"延长裂变酵母时间寿命的p型H+- atp酶Pma1抑制剂的特性。","authors":"Masahiro Tamura, Wakana Yamashita, Takahide Hibi, Shougo Inui, Koki Tanaka, Mami Ozako, Takafumi Shimasaki, Hokuto Ohtsuka, Masatoshi Shibuya, Yoshihiko Yamamoto, Satoshi Yokoshima, Hirofumi Aiba","doi":"10.1007/s00438-025-02264-4","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of the activity of Pma1, a widely conserved P-type proton exporting ATPase, has been shown to extend the chronological lifespan (CLS) in fission yeast Schizosaccharomyces pombe. To develop a specific inhibitor for Pma1 of S. pombe, we focused on Si01, a candidate inhibitor of Saccharomyces cerevisiae Pma1. First, we have established a method for synthesis of Si01 and then investigated its Pma1 inhibitory activity and lifespan extension effect in fission yeast. Second, we also synthesized derivatives of Si01 and determined the minimum structure required for inhibition of S. pombe Pma1. Here we showed that the inhibitory activity of Pma1 correlates with the effect of lifespan extension. Si01 reduced the activity of purified Pma1 protein and extended the CLS of not only fission yeast but also budding yeast. These results provide a molecular basis for understanding the mechanism of Pma1 inhibition and the potential for developing molecules that regulate lifespan.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"58"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of P-type H<sup>+</sup>-ATPase Pma1 inhibitors that extend chronological lifespan in fission yeast.\",\"authors\":\"Masahiro Tamura, Wakana Yamashita, Takahide Hibi, Shougo Inui, Koki Tanaka, Mami Ozako, Takafumi Shimasaki, Hokuto Ohtsuka, Masatoshi Shibuya, Yoshihiko Yamamoto, Satoshi Yokoshima, Hirofumi Aiba\",\"doi\":\"10.1007/s00438-025-02264-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inhibition of the activity of Pma1, a widely conserved P-type proton exporting ATPase, has been shown to extend the chronological lifespan (CLS) in fission yeast Schizosaccharomyces pombe. To develop a specific inhibitor for Pma1 of S. pombe, we focused on Si01, a candidate inhibitor of Saccharomyces cerevisiae Pma1. First, we have established a method for synthesis of Si01 and then investigated its Pma1 inhibitory activity and lifespan extension effect in fission yeast. Second, we also synthesized derivatives of Si01 and determined the minimum structure required for inhibition of S. pombe Pma1. Here we showed that the inhibitory activity of Pma1 correlates with the effect of lifespan extension. Si01 reduced the activity of purified Pma1 protein and extended the CLS of not only fission yeast but also budding yeast. These results provide a molecular basis for understanding the mechanism of Pma1 inhibition and the potential for developing molecules that regulate lifespan.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"300 1\",\"pages\":\"58\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-025-02264-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02264-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Characterization of P-type H+-ATPase Pma1 inhibitors that extend chronological lifespan in fission yeast.
Inhibition of the activity of Pma1, a widely conserved P-type proton exporting ATPase, has been shown to extend the chronological lifespan (CLS) in fission yeast Schizosaccharomyces pombe. To develop a specific inhibitor for Pma1 of S. pombe, we focused on Si01, a candidate inhibitor of Saccharomyces cerevisiae Pma1. First, we have established a method for synthesis of Si01 and then investigated its Pma1 inhibitory activity and lifespan extension effect in fission yeast. Second, we also synthesized derivatives of Si01 and determined the minimum structure required for inhibition of S. pombe Pma1. Here we showed that the inhibitory activity of Pma1 correlates with the effect of lifespan extension. Si01 reduced the activity of purified Pma1 protein and extended the CLS of not only fission yeast but also budding yeast. These results provide a molecular basis for understanding the mechanism of Pma1 inhibition and the potential for developing molecules that regulate lifespan.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.