Transcriptional characterization of sepsis in a LPS porcine model.

IF 2.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ryan Neill
{"title":"Transcriptional characterization of sepsis in a LPS porcine model.","authors":"Ryan Neill","doi":"10.1007/s00438-025-02261-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper identifies gene candidates differentially expressed in the porcine brain during sepsis, designed for eventual application in human clinical care for earlier detection of sepsis, as no known biomarkers currently exist. Sepsis associated encephalopathy (SAE) is characterized by dysregulated molecular pathways of the immune response impinging upon normal central nervous system (CNS) function and ultimately resulting in lasting cognitive and behavioral impairments. This study seeks to identify gene candidates that exhibit altered transcriptional expression during sepsis. Twelve Yorkshire pigs (n = 6 for saline control and lipopolysaccharide group) were utilized. LPS injection rate was 0.5-0.75 mL/kg resulting in death within 5-10 h. Brain tissue was collected and analyzed via bulk RNA-seq, and corresponding computational genomic analysis. Multiple genes demonstrated significant differential expression in the early septic brain, correlating with endothelial cell disruption, immune/inflammatory alterations, and potential alterations in microglia. Gene candidates downregulated include: OCLN, SLC19A3, and SLC52A3. Genes upregulated include: ICAM1, IRF1, CXCL10, and ZFP36. Specific gene candidates were identified as early changes in the septic brain that could be targets to prevent long-term cognitive and behavioral changes seen in sepsis survivors and establish a baseline diagnostic panel to interrogate in animal models with the goal of advancing treatments for human patients who experience sepsis.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"57"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02261-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper identifies gene candidates differentially expressed in the porcine brain during sepsis, designed for eventual application in human clinical care for earlier detection of sepsis, as no known biomarkers currently exist. Sepsis associated encephalopathy (SAE) is characterized by dysregulated molecular pathways of the immune response impinging upon normal central nervous system (CNS) function and ultimately resulting in lasting cognitive and behavioral impairments. This study seeks to identify gene candidates that exhibit altered transcriptional expression during sepsis. Twelve Yorkshire pigs (n = 6 for saline control and lipopolysaccharide group) were utilized. LPS injection rate was 0.5-0.75 mL/kg resulting in death within 5-10 h. Brain tissue was collected and analyzed via bulk RNA-seq, and corresponding computational genomic analysis. Multiple genes demonstrated significant differential expression in the early septic brain, correlating with endothelial cell disruption, immune/inflammatory alterations, and potential alterations in microglia. Gene candidates downregulated include: OCLN, SLC19A3, and SLC52A3. Genes upregulated include: ICAM1, IRF1, CXCL10, and ZFP36. Specific gene candidates were identified as early changes in the septic brain that could be targets to prevent long-term cognitive and behavioral changes seen in sepsis survivors and establish a baseline diagnostic panel to interrogate in animal models with the goal of advancing treatments for human patients who experience sepsis.

LPS猪模型脓毒症的转录特征。
本文确定了脓毒症期间猪脑中差异表达的候选基因,旨在最终应用于人类临床护理,以早期检测脓毒症,因为目前还没有已知的生物标志物。脓毒症相关脑病(SAE)的特征是免疫反应分子通路失调,影响正常的中枢神经系统(CNS)功能,最终导致持久的认知和行为障碍。本研究旨在确定在脓毒症期间表现出转录表达改变的候选基因。试验选用12头约克猪,生理盐水对照组和脂多糖组各6头。LPS注射率0.5-0.75 mL/kg, 5-10 h内死亡。收集脑组织,进行bulk RNA-seq分析,并进行相应的计算基因组分析。多个基因在早期败血症脑中表现出显著的差异表达,与内皮细胞破坏、免疫/炎症改变和小胶质细胞的潜在改变相关。下调的候选基因包括:OCLN、SLC19A3和SLC52A3。上调的基因包括:ICAM1、IRF1、CXCL10和ZFP36。特定候选基因被确定为脓毒症大脑的早期变化,可以作为预防脓毒症幸存者长期认知和行为变化的目标,并建立基线诊断小组,以在动物模型中进行调查,目标是推进人类脓毒症患者的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信