{"title":"SEM-DIC characterization of the damage mechanism of an AlSi10Fe0.7 casting alloy on the microstructure scale","authors":"","doi":"10.1016/j.matchar.2024.114478","DOIUrl":"10.1016/j.matchar.2024.114478","url":null,"abstract":"<div><div>Various brittle phases are present in commercial cast aluminum alloys, which strongly influence their mechanical behavior. Among these, silicon precipitates are nearly omnipresent, as Si is a common alloying element. In secondary alloys, usually Fe-containing phases cannot be avoided, and they tend to degrade the mechanical properties. The interaction between the silicon phase and the failure-critical intermetallic phase in the Al-Si-Fe phase system (β-<span><math><msub><mi>Al</mi><mn>5</mn></msub><mtext>FeSi</mtext></math></span>) is studied in this paper in high resolution. A model alloy AlSi10Fe0.7 was defined, which is composed of a large grain Al-matrix, Si-precipitates and the plate-like β-<span><math><msub><mi>Al</mi><mn>5</mn></msub><mtext>FeSi</mtext></math></span> phase. The goal of the study was to identify “hot spots” in the microstructure from which cracks may initiate under mechanical loading. The main tool was a deformation analysis via digital image correlation in the SEM (SEM-DIC). This allows the identification and tracking of developing strain localizations at different potential crack initiation sites with a high resolution as well as capturing an overview over the whole specimen. An adapted frame averaging script minimized measurement errors induced by drift. The SEM-DIC results show that the deformation field is governed by the elastic incompatibility of the microstructural constituents. Crack initiation occurs because of the detachment of the Si + β-<span><math><msub><mi>Al</mi><mn>5</mn></msub><mtext>FeSi</mtext></math></span> phase boundary. Cracks then cross the phase boundary and propagate along twin boundaries in the β-<span><math><msub><mi>Al</mi><mn>5</mn></msub><mtext>FeSi</mtext></math></span> phase. Final failure is caused by linking fractured brittle plate-like particles.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering texture and twins of Cu foils preparing by pulse electrodeposition and their properties","authors":"","doi":"10.1016/j.matchar.2024.114477","DOIUrl":"10.1016/j.matchar.2024.114477","url":null,"abstract":"<div><div>The controllable microstructure and the overall performance improvement of electrodeposited nano twinned Cu (nt-Cu) foil are crucial for the sustainable development of high energy density batteries and microelectronics technology. Although pulse electrodeposition (PED) and additives have been widely used in controlling nt-Cu foil, there is still a lack of research on the controllable microstructure of nt-Cu foil and its microstructure depended properties. In this study, nt-Cu foils with different orientations were prepared by adjusting the T<sub>off</sub> time and additives during the PED process. The effects of these parameters on the microstructure and comprehensive properties of the nt-Cu foil were studied. The T<sub>off</sub> time and polyethylene glycol (PEG)-3-mercapto-1-propanesulfonate sodium salt (MPS)-(chloride ions)Cl<sup>−</sup> (PEG-MPS-Cl<sup>−</sup>) additive changed the kinetic parameters of the electrochemical reaction and ultimately affected the reduction rate of Cu<sup>2+</sup> and the overpotential of the deposition process. This modulation effectively regulated the nucleation and growth behavior of Cu atoms, thereby reducing the surface roughness of the nt-Cu foil, refining the grains, and forming nano-twins with different orientations. Due to the combined strengthening effect of grain refinement, dislocation, and texture orientation, (111) oriented nt-Cu foil demonstrated remarkable mechanical and frictional wear properties, whereas (220) oriented nt-Cu foil exhibited superior conductivity and corrosion resistance. These findings may offer promising prospects for the controllable design of engineering textures and nano-twin structures of high-performance nt-Cu foil by electrodeposition.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced strength and ductility of boron nitride nanosheet reinforced cu composites through constructing an interfacial three-dimensional structure","authors":"","doi":"10.1016/j.matchar.2024.114474","DOIUrl":"10.1016/j.matchar.2024.114474","url":null,"abstract":"<div><div>To address the poor wettability and weak interface bonding between boron nitride nanosheet (BNNS) and Cu, BNNS/CuTi composites were prepared through matrix microalloying by adding 1 wt% Ti. Solid-state interfacial reactions resulted in the formation of TiN transition layers and TiB whiskers (TiBw), collectively constructed a BNNS-(TiN&TiB)-Cu interfacial three-dimensional structure (I-3DS). The coherent I-3DS significantly reduced the interfacial energy, improved the interfacial stability, and achieved a favorable combination of strength and ductility in BNNS/CuTi composites. The 0.1 wt% BNNS/CuTi composite achieved an ultimate tensile strength (UTS) of 485 MPa, representing increases of 114 % and 62 % over pure Cu and 0.1 wt% BNNS/Cu composite, respectively. The interlocking structure formed by I-3DS and Cu doubled the theoretical interface shear strength limit and improved load transfer efficiency. This study offered new insights into the innovative design of high-performance Cu matrix composites (CMCs) by constructing I-3DS.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of a Zr source addition on the microstructure of Al-SiC composites elaborated by the Laser Powder Bed Fusion (L-PBF) process","authors":"","doi":"10.1016/j.matchar.2024.114472","DOIUrl":"10.1016/j.matchar.2024.114472","url":null,"abstract":"<div><div>The present work focuses on the effect of the addition of a zirconium source on the microstructure of Al-SiC composites produced by Laser Powder Bed Fusion (L-PBF). More specifically, the aim is to address the issue of the SiC decomposition into the water-soluble aluminum carbide Al<sub>4</sub>C<sub>3</sub> in Al-SiC composites produced by L-PBF, with the objective of limiting its formation by adding another element to the system. To this end, AlSi<sub>7</sub>Mg<sub>0.6</sub>-SiC-ZrO<sub>2</sub> composite powders are successfully prepared and printed in a standard L-PBF equipment. The resulting parts are then thoroughly characterized, in order to understand the physico-chemical mechanisms involved during the L-PBF process. The results show a decrease in the Al<sub>4</sub>C<sub>3</sub> amount by ZrC formation. Another important result is that bulk composites exhibit a fully equiaxed microstructure attributed to the τ<sub>1</sub> (Al,Si)<sub>3</sub>Zr ternary phase, with all the characteristics of a good nucleating agent for aluminum phase. To support these microstructure experimental results, a first version of a quaternary Al-Zr-Si-C thermodynamic database was developed using the Calphad method. These calculations enable to establish a solidification path providing information on the phases that may form after heat treatment of L-PBF materials.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation and simulation assessment on fluidity and hot tearing susceptibility of Al-Li-Cu-X alloy: The role of microalloying elements","authors":"","doi":"10.1016/j.matchar.2024.114469","DOIUrl":"10.1016/j.matchar.2024.114469","url":null,"abstract":"<div><div>The meticulous exploration of castability, especially the fluidity and hot tearing susceptibility (HTS), assumes paramount significance in the fabrication of high-quality Al-Li-Cu alloys. In this work, the effect of microalloying elements such as Ti, Mg, Si, Zr, and Sc on the fluidity and HTS of the alloys was systematically investigated, and the significant improvement in fluidity and the reduction in HTS by the addition of these microalloying elements were identified. Comparative analyses with the Al-3Li-1.5Cu alloy reveal a significant increase of up to 45 % in fluidity and a remarkable reduction of up to 83 % in HTS with the addition of these microalloying elements. To unveil the underlying mechanisms, the experimental results were compared with the predictions derived from the CSC criterion, Kou's criterion, and a numerical simulation performed using ProCAST software. The analysis reveals a discrepancy between these predictions and the experimental outcomes, highlighting their limitations in capturing the nuanced effects of minor microalloying elements on fluidity and HTS. Subsequently, a detailed exploration of other influencing factors, including microstructural features, solidification interval, and various thermophysical parameters, was conducted, illuminating the corresponding mechanisms. These findings are expected to provide valuable insights into the fluidity and HTS of Al-Li-Cu-X alloys, thereby contributing to the application and advancement of cast Al-Li alloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive study of CeO2/CuFe2O4 nanocomposites: Structural, EPR, magnetic, electrochemical, and cytotoxicity properties","authors":"","doi":"10.1016/j.matchar.2024.114471","DOIUrl":"10.1016/j.matchar.2024.114471","url":null,"abstract":"<div><div>This study dives into the successful synthesis of CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites using the auto-combustion approach and elucidates their characteristics. The electrochemical analysis of samples calcination produced at 700 °C (CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub>) revealed good results, with a specific capacitance (Cs) of 123 F/g at a current density (CD) of 0.25 A g<sup>−1</sup> in a 1 M KOH solution. Significantly, these findings emphasize the established technique's potential for producing new, highly active, flexible, and environmentally friendly substrate materials appropriate for a variety of applications in supercapacitors. CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites may be useful in biological and medicinal research. Despite their extensive use, little study has been conducted to investigate their possible impact on cell viability, in normal cell lines. The positive benefits of the CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposite structure were assessed using X-ray diffraction (XRD). To assess the impact of these nanocomposites, MTT cytotoxicity tests were performed on normal (mouse muscle fibroblast - BLO-11) cell lines. The results show that CeO<sub>2</sub>/CuFe<sub>2</sub>O<sub>4</sub> nanocomposites have a high potential for biomedical applications, as they had no harmful effects on the cell types evaluated. As a result, the structure of the material appears to be crucial in determining both electrochemical performance and cell longevity. This discovery is significant because it provides useful insights into the morphological engineering of electrodes for a variety of applications and influences future material development.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ordering-facilitated lower hydrogen embrittlement sensitivity in a prototype high-entropy alloy","authors":"","doi":"10.1016/j.matchar.2024.114473","DOIUrl":"10.1016/j.matchar.2024.114473","url":null,"abstract":"<div><div>The ageing treatment (450 °C/60 h) led to the spinodal decomposition at grain boundaries (GBs) and the development of chemical short-range orders (CSROs) in the alloy matrix, increasing the strength and effectively reducing the hydrogen embrittlement (HE) sensitivity of the equiatomic FeMnNiCoCr alloy. Firstly, the emergence of NiMn- and Cr-rich orders at GB regions reduces hydrogen diffusion rates along GBs and limits hydrogen enrichment at these sites. Secondly, CSROs promote hydrogen accumulation within the grain interior and impede hydrogen penetration, resulting in a shallower hydrogen-affected depth in the aged sample. Moreover, the modulation of hydrogen distribution by microstructure initiates transgranular cracking in the aged sample.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of surface nanocrystallization induced by mechanical grinding treatment on stress corrosion cracking behavior of 316 L austenitic stainless steel in boiling MgCl2 solution","authors":"","doi":"10.1016/j.matchar.2024.114458","DOIUrl":"10.1016/j.matchar.2024.114458","url":null,"abstract":"<div><div>The effect of surface nanocrystallization prepared by surface mechanical grinding treatment (SMGT) on stress corrosion cracking (SCC) behavior of 316 L austenitic stainless steel was studied in boiling MgCl<sub>2</sub> solutions at 155 °C and 130 °C, respectively. The refined-grain structures of different morphologies produced by three different SMGT penetration depths were employed to assess how different microstructures and corrosive environments affected the SCC behavior of nanocrystallized surfaces. Results showed that in the 155 °C boiling MgCl<sub>2</sub> solution, the refinement of grains resulted in an increase in the critical stress for SCC initiation and progressively enhanced the ability to inhibit crack propagation with the SMGT penetration depth increasing from 20 μm to 60 μm. In the 130 °C MgCl<sub>2</sub> solution, the grain refinement still contributed to resisting crack propagation, but the threshold stress for SCC initiation on the surface with the deepest SMGT penetration depth of 60 μm was lower than that in the 155 °C MgCl<sub>2</sub> solution. This behavior was attributed to the significant martensitic phase transformation formed in SMGT with penetration depth of 60 μm, resulting in the mechanism of SCC transforming from anodic dissolution in MgCl<sub>2</sub> solution at 155 °C to hydrogen embrittlement at 130 °C.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lap joining of Ti6Al4V titanium alloy by vortex flow-based friction stir welding","authors":"","doi":"10.1016/j.matchar.2024.114462","DOIUrl":"10.1016/j.matchar.2024.114462","url":null,"abstract":"<div><div>The current study uses a novel vortex flow-based friction stir lap welding (VFSLW) process to weld 1.4 mm thick Ti6Al4V sheets, trying to replace the diffusion bonding in the superplastic forming/diffusion bonding process. The mechanical properties and joining mechanism of the VFSLW joint were investigated. Good weld formation was obtained at 300–350 rpm and 80 mm/min. No hook defect was formed in the lap interface. The lap joint fractured across the stir zone (SZ) in the top plate under the optimal parameters. The cracks initiated from the oxidation defect, where the oxides on the workpiece surface were involved in the SZ by the vortex during the welding. It suggests that a good argon shield is very important for the VFSLW of titanium alloy. The highest tensile strength reaches ∼890 MPa, up to 95 % of the base material. The formation of an α + β lamellar structure in the SZ is due to the peak welding temperature exceeding the β-transus temperature. In the bonded zone (BZ), a very thin layer with ultrafine α grains was formed by dynamic recrystallization in the α phase field, although its two sides are α + β lamellar structures. This is because of the oxidation on the workpiece surface during the welding process and the O element is a strong α stabilizer.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ablation behavior of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC-Si ceramics via reactive melt infiltration","authors":"","doi":"10.1016/j.matchar.2024.114468","DOIUrl":"10.1016/j.matchar.2024.114468","url":null,"abstract":"<div><div>(Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)B<sub>2</sub>-SiC ceramics with an open porosity of only 0.49 % were successfully fabricated in this work by the reactive melt infiltration (RMI) method. Air plasma flame ablation behavior of (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)B<sub>2</sub>-SiC ceramics under 2300 °C temperature exhibited excellent resistance with mass and linear ablation rates of 3.66 mg/s and 0.88 μm/s, respectively. During ablation, the transition from continuous melting sublimation of Si and oxidation of SiC to oxidation of (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)B<sub>2</sub> occurred. The uphill diffusion of Ti atoms transited (Ti,Zr,Hf,Nb,Ta)O<sub>x</sub> to Ti(Nb<sub>x</sub>Ta<sub>1-x</sub>)<sub>2</sub>O<sub>7</sub> while Zr<sub>0.5</sub>Hf<sub>0.5</sub>O<sub>2</sub> continuously precipitated. A multicomponent oxide layer of (Ti,Zr,Hf,Nb,Ta)O<sub>x</sub> along with (Zr,Hf)<sub>6</sub>Ta<sub>2</sub>O<sub>17</sub>, (Hf,Zr)(TiO<sub>4</sub>)<sub>2</sub>, and (Zr,Hf)<sub>x</sub>(Ti,Ta)<sub>1-x</sub>O embedded in SiO<sub>2</sub> melt was eventually formed on the ceramic surface. This oxide layer was spread above the high melting point Zr<sub>0.5</sub>Hf<sub>0.5</sub>O<sub>2</sub>, Ti(Nb<sub>x</sub>Ta<sub>1-x</sub>)<sub>2</sub>O, and low oxygen content (Ti,Zr,Hf,Nb,Ta)O<sub>x</sub> to form a stable, dense, and high viscosity protective layer.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142526226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}