Materials Characterization最新文献

筛选
英文 中文
Novel Mo: CoFe2O4 nanoparticles combustion synthesis for opto-magneto-electrochemical applications: A systematic analysis 用于光磁电化学应用的新型 Mo: CoFe2O4 纳米粒子燃烧合成:系统分析
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-05 DOI: 10.1016/j.matchar.2024.114514
Njod Al Sdran , Kamlesh V. Chandekar , Sajid Ali Ansari , Mohd Shkir
{"title":"Novel Mo: CoFe2O4 nanoparticles combustion synthesis for opto-magneto-electrochemical applications: A systematic analysis","authors":"Njod Al Sdran ,&nbsp;Kamlesh V. Chandekar ,&nbsp;Sajid Ali Ansari ,&nbsp;Mohd Shkir","doi":"10.1016/j.matchar.2024.114514","DOIUrl":"10.1016/j.matchar.2024.114514","url":null,"abstract":"<div><div>In current work, various concentrations (0.0 wt%, 0.10 wt%, 0.25 wt%, 0.50 %,0.75 wt%, and 1 wt%) of Molybdenum (Mo) - doped cobalt ferrite (CFO) nanoparticles (Mo:CFO NPs) were synthesized using the flash combustion approach. The structural analysis of the prepared Mo:CFO was examined by the XRD patterns, and the obtained crystallite size 48.64, 46.72, 22.81, 21.05, 18.03, and 19.31 nm for 0.0 wt%, 0.10 wt%, 0.25 wt%, 0.50 wt%, 0.75 wt%, and 1 wt% Mo:CFO NPs, respectively. The presence of stoichiometry and homogeneity of the prepared Mo:CFO NPs was confirmed by the EDX analysis. The five phonon modes of the prepared Mo:CFO NPs were recorded by FT-Raman spectra, and the phonon modes were observed around 220, 312, 479, 624, and 685 cm<sup>−1</sup> that corresponded o T<sub>2g</sub>(2), E<sub>g</sub>, T<sub>2g</sub>(1), A<sub>1g</sub>(2), and A<sub>1g</sub>(1) symmetries, respectively. The grain sizes of the pure CFO and Mo:CFO NPs were evaluated using the images of scanning electron microscopy (SEM) and obtained in the range of 39–61 nm, respectively. The presence of valence states Co (2p), Fe (2p), O (1 s), and Mo (3d) in the prepared 1 wt% Mo:CFO NPs were examined by XPS spectra. The particle sizes ∼26.4 nm and ∼ 16.7 nm were obtained for pure CFO and 1 wt% Mo:CFO NPs using lognormal function fitting. The emission peaks at 445 ± 3, 521 ± 3, and 620 ± 2 nm in the PL spectra were observed by PL spectroscopy. The decrease in saturation magnetization Ms. (70.80–66.54 emu/g) and reduced remanent magnetization Mr. (24.22–18.64 emu/g) of prepared Mo: CFO NPs was observed in the MH analysis by SQUID analysis. The electrochemical study of Mo: CFO NPs (0.0 %, 0.25 %, 0.50 %, and 1.0 %) was done in a three-electrode assembly cell. The capacitance of values 650.0 Fg<sup>−1</sup>, 800.0 Fg<sup>-1,</sup> and 810.0 Fg<sup>−1</sup> for pure CFO, 0.25 % Mo: CFO, and 0.50 % Mo: CFO were recorded in electrochemical analysis. The highest capacitance of 840.0 Fg<sup>−1</sup> was observed for the electrode with 1.0 % Mo: CFO NPs. It was analyzed that the increase in CFO electrodes enhances their performance, and therefore, it can be utilized for multifunctional devices.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114514"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creep-fatigue interactive behavior and damage mechanism of TP321 stainless steel under hybrid-controlled conditions 混合控制条件下 TP321 不锈钢的蠕变-疲劳交互行为和损伤机理
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-05 DOI: 10.1016/j.matchar.2024.114528
Chenwei Zhang , Shanghao Chen , Hongchang Wang , Fengping Zhong , Ling Li , Qiang Liu , Chong Zhen , Xujia Wang , Lijia Luo , Shiyi Bao
{"title":"Creep-fatigue interactive behavior and damage mechanism of TP321 stainless steel under hybrid-controlled conditions","authors":"Chenwei Zhang ,&nbsp;Shanghao Chen ,&nbsp;Hongchang Wang ,&nbsp;Fengping Zhong ,&nbsp;Ling Li ,&nbsp;Qiang Liu ,&nbsp;Chong Zhen ,&nbsp;Xujia Wang ,&nbsp;Lijia Luo ,&nbsp;Shiyi Bao","doi":"10.1016/j.matchar.2024.114528","DOIUrl":"10.1016/j.matchar.2024.114528","url":null,"abstract":"<div><div>In this study, Hybrid-controlled creep-fatigue (HCCF) tests were conducted on TP321 austenitic stainless steel under a variety of test conditions. The effects of strain amplitude, holding time, holding stress and temperature on the creep-fatigue behavior of TP321 austenitic stainless steel were not only analyzed in detail but also revealed the creep-fatigue damage interactive mechanism. The results demonstrated that a rise in test temperature and load holding time markedly induced creep deformation, resulting in a notable reduction in failure life. Additionally, an increase in test temperature led to the cessation of the cyclic hardening phenomenon. Secondly, the analysis of fracture morphology and X-ray computed tomography (X-CT) scanning results demonstrated that the transgranular cracks expanded inwards and connected with the intergranular voids under creep-fatigue interaction, forming a mixed intergranular and transcrystalline fracture mode. The presence of large creep cavities impeded the propagation of fatigue cracks when creep damage was the dominant phenomenon. Subsequently, the damage evolution mechanism was elucidated through microstructural analysis, which revealed that the impact of the slip bands on the triangular grain boundaries and the precipitation of carbides facilitated the nucleation of voids and the internal formation of intergranular microcracks, thereby causing creep-fatigue damage interaction. Finally, the TP321 austenitic stainless steel creep-fatigue damage interactive mechanism diagram was proposed in conjunction with the fracture morphological characteristics and microstructure.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114528"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of Al/Ni ratio and solidification cooling rate in grain boundary engineering of AlxCrFeMnNi(2-x) high entropy alloy 铝/镍比和凝固冷却速度在 AlxCrFeMnNi(2-x) 高熵合金晶界工程中的作用
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-04 DOI: 10.1016/j.matchar.2024.114507
By T.X. Wang , Y.X. Wu , W.Q. Liu , C.Y. Xiong , H.T. Jiang
{"title":"Roles of Al/Ni ratio and solidification cooling rate in grain boundary engineering of AlxCrFeMnNi(2-x) high entropy alloy","authors":"By T.X. Wang ,&nbsp;Y.X. Wu ,&nbsp;W.Q. Liu ,&nbsp;C.Y. Xiong ,&nbsp;H.T. Jiang","doi":"10.1016/j.matchar.2024.114507","DOIUrl":"10.1016/j.matchar.2024.114507","url":null,"abstract":"<div><div>In this work, the roles of Al/Ni ratio and solidification cooling rate in grain size, dendrite morphology and grain boundary characteristic of the Al<sub>x</sub>CrFeMnNi<sub>(2-x)</sub> (x = 0.3, 0.7 and1.0) high-entropy alloys (HEAs) were investigated. The results show that the increasing of Al/Ni ratio results in a transition from single-phase FCC to dual-phase BCC + B2 along with the reverse precipitation behavior of BCC phase. While the phase composition is not affected by solidification cooling rate. With the increasing of Al/Ni ratio and solidification cooling rate, a significant columnar-to-equiaxed transition (CET) behavior can be observed. That is, grain refinement and transition from columnar dendrites to equiaxial and cellular dendrites. This is mainly attributed to the constitutional supercooling (CS) caused by the solute interaction effect of Al and Ni, and which can be evaluated by <em>P</em> and <em>Q</em> parameters. In addition, in-situ formation of serrated grain boundaries (SGBs) can be also observed in solidification microstructures, and with the increasing of Al/Ni ratio, the proportion of SGBs increases gradually. Whether the B2 precipitated phase is present or not, the formation mechanism of SGBs is mainly attributed to the lattice strain energy caused by the segregation of Al and Ni. The strategy simultaneously achieving grain refinement, CET and in-situ forming SGBs during solidification by tailoring Al/Ni ratio opens new perspectives for grain boundary engineering.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114507"},"PeriodicalIF":4.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the thermal-chemical-mechanical coupling effects on the cracking behavior of machine gun barrel: Microstructural insights 研究热-化学-机械耦合效应对机枪枪管开裂行为的影响:微观结构见解
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-04 DOI: 10.1016/j.matchar.2024.114522
Cheng Zhang , Yang Wang , Jun Xue , Junsong Li , Shujing Wang , Pengfei Jin , Xiaoshuai Shi , Cheng Zhang , Caihong Dou , Junyu Chen , Jinfeng Huang
{"title":"Investigating the thermal-chemical-mechanical coupling effects on the cracking behavior of machine gun barrel: Microstructural insights","authors":"Cheng Zhang ,&nbsp;Yang Wang ,&nbsp;Jun Xue ,&nbsp;Junsong Li ,&nbsp;Shujing Wang ,&nbsp;Pengfei Jin ,&nbsp;Xiaoshuai Shi ,&nbsp;Cheng Zhang ,&nbsp;Caihong Dou ,&nbsp;Junyu Chen ,&nbsp;Jinfeng Huang","doi":"10.1016/j.matchar.2024.114522","DOIUrl":"10.1016/j.matchar.2024.114522","url":null,"abstract":"<div><div>The presence of severe cracks at the inner bore of the gun barrel accelerates the erosion failure, whereas the evolution and failure mechanism of crack tips under the thermal-chemical-mechanical coupling effects needs further investigation. Herein, the elemental distribution, phase structure, and strain surrounding the perpendicular and circumferential cracks in a failed gun barrel were investigated in detail by utilizing scanning electron microscopy (SEM), transmission Kikuchi diffraction (TKD), and transmission electron microscopy (TEM). Results indicated that the perpendicular crack was covered by double continuous layers composed of inner FeO oxides and outer Fe<sub>0.96</sub>S sulfides. Notably, a high-density precipitation of FeO oxides together with severe lattice distortion and localized amorphization was observed at the crack tip, accelerating the growth of the cracks. For the circumferential crack, the presence of fine recrystallized grains alongside coarsened M<sub>23</sub>C<sub>6</sub> carbides was observed at the crack tip. There was a high level of strain concentration along high-angle grain boundaries at the forefront of the circumferential crack tip, resulting in the cracking along grain boundaries. Furthermore, the models for propagation of perpendicular and circumferential cracks under the thermal-chemical-mechanical coupling effects were proposed respectively.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114522"},"PeriodicalIF":4.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of cold rolling on microstructure and mechanical behavior of Fe35Ni35Cr20Mn10 high-entropy alloy 冷轧对 Fe35Ni35Cr20Mn10 高熵合金显微组织和力学性能的影响
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-03 DOI: 10.1016/j.matchar.2024.114503
Jun Zhou , Hengcheng Liao , Hongmei Chen , Di Feng , Weijun Zhu
{"title":"Effect of cold rolling on microstructure and mechanical behavior of Fe35Ni35Cr20Mn10 high-entropy alloy","authors":"Jun Zhou ,&nbsp;Hengcheng Liao ,&nbsp;Hongmei Chen ,&nbsp;Di Feng ,&nbsp;Weijun Zhu","doi":"10.1016/j.matchar.2024.114503","DOIUrl":"10.1016/j.matchar.2024.114503","url":null,"abstract":"<div><div>The effects of cold rolling on the microstructure evolution and mechanical behavior of Fe35Ni35Cr20Mn10 high-entropy alloys were investigated. The microstructure was characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The mechanical properties were examined using a CMT5105 tensile tester. The prepared alloy exhibited excellent plastic deformation ability during continuous cold rolling, with a reduction rate greater than 95 %. Cold rolling resulted in extensive grain elongation, formation of deformation bands within the grains, and development of crystallographic textures. The evolution of the microstructure was accompanied by dislocation slip, deformation twins, and formation of shear bands during multipass rolling to a thickness strain of 95 % at room temperature. As the rolling reduction increased, the Brass{110}〈112〉 texture and 〈111〉//RD texture further enhanced. Cold rolling led to substantial strengthening of the prepared alloy; as the rolling reduction increased, both strength and hardness gradually increased. When the rolling reduction reached 95 %, its ultimate tensile strength approached 1116 MPa, which is 2.2 times that in the homogenized condition but at the expense of reduced ductility. After severe cold rolling, an increase in dislocation density occurred along with a microstructure consisting of twins and a network of shear bands formed which enhanced hardness, yield strength, and tensile strength.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114503"},"PeriodicalIF":4.8,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of mechanical properties in Ti2AlNb/Ti60 brazed joints via Nb foam-induced in-situ formation of tough Ti4Nb phase 通过 Nb 泡沫诱导原位形成坚韧的 Ti4Nb 相提高 Ti2AlNb/Ti60 焊接接头的机械性能
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-03 DOI: 10.1016/j.matchar.2024.114513
Peng Wang , Heng Shao , Haiyan Chen , Hongbo Zhang , Xin Nai , Shuai Zhao , Pengcheng Wang , Xiaoguo Song , Achilles Vairis , Wenya Li
{"title":"Enhancement of mechanical properties in Ti2AlNb/Ti60 brazed joints via Nb foam-induced in-situ formation of tough Ti4Nb phase","authors":"Peng Wang ,&nbsp;Heng Shao ,&nbsp;Haiyan Chen ,&nbsp;Hongbo Zhang ,&nbsp;Xin Nai ,&nbsp;Shuai Zhao ,&nbsp;Pengcheng Wang ,&nbsp;Xiaoguo Song ,&nbsp;Achilles Vairis ,&nbsp;Wenya Li","doi":"10.1016/j.matchar.2024.114513","DOIUrl":"10.1016/j.matchar.2024.114513","url":null,"abstract":"<div><div>Brazing titanium alloys with TiZrCuNi filler typically leads to numerous eutectic structures and brittle intermetallic compounds, compromising the mechanical properties of joints, particularly their toughness. To mitigate this issue, this study employs Ni and Nb foams as interlayers to join Ti<sub>2</sub>AlNb and Ti60 alloy. The results show that using Ni foam as the interlayer only forms 17.8 % β-Ti phase in the brazing seam. In contrast, Nb foam as the interlayer promotes the in-situ formation of 38.5 % Ti<sub>4</sub>Nb phase within the brazing seam, effectively balancing the coefficient of thermal expansion difference and reducing residual thermal stresses. Comparative analysis reveals that the Ti<sub>4</sub>Nb phase has superior plasticity and toughness compared to the β-Ti phase, allowing for substantial strain energy storage. The interface between β-Ti phase and Zr<sub>2</sub>Cu phase exhibits significant lattice mismatch, resulting in an incoherent interface. Conversely, the Nb foam interlayer produces a semi-coherent interface between Ti<sub>4</sub>Nb and Zr<sub>2</sub>Cu phases, characterized by reduced lattice mismatch, which enhances the interfacial bonding strength of the brazed joint. The Ti<sub>2</sub>AlNb/Ti60 joints, when brazed with Nb foam under consistent conditions, achieved a shear strength of 414.6 MPa, which is approximately 18 % superior to that of joints brazed using the Ti-36.5Zr-10Ni-15Cu-0.5Co-0.5Nb amorphous filler solely. Additionally, the shear stress-strain curves of the joints with Nb foam exhibit a more pronounced yield stage compared to those with only filler. This study introduces a novel approach for improving the toughness of brazed joints in practical applications using titanium-based fillers.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114513"},"PeriodicalIF":4.8,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of wall thickness on the precipitation behavior, microstructure, electrical conductivity and mechanical properties of copper alloy prepared by electron beam powder bed fusion 壁厚对电子束粉末床熔融制备的铜合金的析出行为、微观结构、导电性和机械性能的影响
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-03 DOI: 10.1016/j.matchar.2024.114518
Yunzhe Li, Shifeng Liu, Yan Wang, Jianyong Wang, Liangliang Zhang, Wenpeng Jia, Yingkang Wei
{"title":"Effect of wall thickness on the precipitation behavior, microstructure, electrical conductivity and mechanical properties of copper alloy prepared by electron beam powder bed fusion","authors":"Yunzhe Li,&nbsp;Shifeng Liu,&nbsp;Yan Wang,&nbsp;Jianyong Wang,&nbsp;Liangliang Zhang,&nbsp;Wenpeng Jia,&nbsp;Yingkang Wei","doi":"10.1016/j.matchar.2024.114518","DOIUrl":"10.1016/j.matchar.2024.114518","url":null,"abstract":"<div><div>Electron beam powder bed fusion (EB-PBF) is one of the most promising technologies for preparing thin-walled copper alloy, because copper alloy have a high energy absorption rate for electron beam, and high preheating temperature can reduce the solidification temperature gradient and reduce the deformation of thin-walled parts. At present, there are few reports on the systematic research work on the EB-PBF of thin-walled CuCrZr alloy parts, and it's impossible to effectively supervise the production of complex thin-walled CuCrZr alloy parts. This work aims to investigate the effect of thickness on the microstructure and mechanical properties of CuCrZr alloy produced by EB-PBF. As the wall thickness decreases from 5.0 mm to 0.3 mm, the grain sizes of the XY and YZ planes decreased from 20.4 μm and 43.1 μm to 14.5 μm and 21.5 μm respectively, and the texture intensity decreased from 16.04 and 23.57 to 7.62 and 10.99. The analysis showed that Cr<sub>2</sub>O<sub>3</sub> nanoprecipitates were precipitated in situ in the sample, and their average size decreased from 65.8 nm to 21.6 nm. Due to the reduction in grain and nanoprecipitate size, the performance of thin-walled samples is significantly enhanced, with yield strength (YS) increasing from 112 MPa to 165 MPa and conductivity increasing from 71.7 %IACS to 86.1 %IACS. Finally, the main contributions to the YS of specimens with different wall thicknesses was discussed. Precipitation strengthening and dislocation strengthening are the main strengthening mechanisms in thin-walled samples, and the gradual refinement of nano-precipitates is the main reason for the improvement of mechanical properties as the wall thickness decreases.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114518"},"PeriodicalIF":4.8,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase transformation mechanism and microstructure of a Y-doped TiAl gas-atomized powders 掺杂 Y 的 TiAl 气原子化粉末的相变机制和微观结构
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-03 DOI: 10.1016/j.matchar.2024.114520
Xu Gu , Jixin Yang , Xiaodong Nong , Xiaojing Xiong , Yunjie Bi , Jianfei Sun
{"title":"Phase transformation mechanism and microstructure of a Y-doped TiAl gas-atomized powders","authors":"Xu Gu ,&nbsp;Jixin Yang ,&nbsp;Xiaodong Nong ,&nbsp;Xiaojing Xiong ,&nbsp;Yunjie Bi ,&nbsp;Jianfei Sun","doi":"10.1016/j.matchar.2024.114520","DOIUrl":"10.1016/j.matchar.2024.114520","url":null,"abstract":"<div><div>In this study, the phase transformation mechanism of a yttrium-containing β-solidified TiAl alloy (Ti-43Al-9 V-0.3Y at.%), prepared by gas atomization, was systematically investigated. X-ray diffraction, electron backscatter diffraction, scanning electron microscopy, and transmission electron microscopy were utilized to comprehensively analyze the morphology and microstructure of powders with varying sizes as well as the form and distribution of yttrium and its influence on the phase transformation of the powders. The results show that the solidification phase structure of the powders exhibits significant variations: the ultra-fine powder consists of α’ martensite and remaining β phase, while the medium-sized powder is solely composed of β<sub>0</sub> phase. The large-sized dendritic powder comprises β<sub>0</sub>, α’ martensite and α<sub>2</sub> phase. With an increase in powder size, there is a corresponding increase in the content of α<sub>2</sub> phase, whereas the content of martensite initially rises and subsequently declines. Additionally, yttrium is present in the form of multiscale Y-rich precipitates (YAl<sub>2</sub> and Y<sub>2</sub>O<sub>3</sub>) within the matrix, and the segregation degree gradually increases with increasing powder size. The primary factors contributing to the disparity in solidification structure include cooling rate and segregation defects. A faster cooling rate and a higher supercooling degree will inhibit the β → α transition, while the Y-rich precipitated phase forms a pre-existing strain zone around it, providing an effective site for martensitic nucleation. In summary, these findings offer novel insights into the mechanism of phase transformation in yttrium-containing β-solidified TiAl alloy, thereby contributing to further advancements in the theory of rapid solidification for TiAl alloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114520"},"PeriodicalIF":4.8,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of heat treatment on microstructure and corrosion behavior of AlCu alloy fabricated by wire arc additive manufacturing 热处理对线弧增材制造 AlCu 合金微观结构和腐蚀行为的影响
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-02 DOI: 10.1016/j.matchar.2024.114516
Guochun Ren , Yang Zheng , Ruize Xiong , Cenya Zhao , Tianqi Wang , Liangyu Li
{"title":"Effect of heat treatment on microstructure and corrosion behavior of AlCu alloy fabricated by wire arc additive manufacturing","authors":"Guochun Ren ,&nbsp;Yang Zheng ,&nbsp;Ruize Xiong ,&nbsp;Cenya Zhao ,&nbsp;Tianqi Wang ,&nbsp;Liangyu Li","doi":"10.1016/j.matchar.2024.114516","DOIUrl":"10.1016/j.matchar.2024.114516","url":null,"abstract":"<div><div>This study investigated the effect of heat treatment on the microstructure and corrosion behavior of the Wire Arc Additive Manufacturing (WAAM) 2319 Al alloy. The results showed that the solid solution treatment and the artificial ageing significantly increased the microhardness of the alloy, and the second phase of the alloy changed from a continuous to a dispersed distribution. Heat treatment led to an increase in pores, and the number of small-size pores increased significantly with the ageing time; this increased the risk of crevice corrosion. The as-deposited WAAM 2319 Al alloy, characterized by an α-Al matrix and coarse intergranular intermetallics Al<sub>2</sub>Cu, underwent galvanic corrosion, which severely damaged the passivation film. The solid solution treatment alleviated this by dissolving the coarse intergranular intermetallics and improving corrosion resistance. During artificial ageing, the corrosion potential decreased gradually as the size and number of precipitated phases increased. Pitting corrosion was the most severe, and corrosion resistance was lowest in the solid solution + peak ageing state.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114516"},"PeriodicalIF":4.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-temperature oxidation behaviors of Cu-15Ni-8Sn alloy in different aging conditions 不同老化条件下 Cu-15Ni-8Sn 合金的低温氧化行为
IF 4.8 2区 材料科学
Materials Characterization Pub Date : 2024-11-02 DOI: 10.1016/j.matchar.2024.114519
Yi Gao , Ziyan Zhang , Jinjuan Cheng , Chaoqiang Liu , Kechao Zhou , Xueping Gan
{"title":"Low-temperature oxidation behaviors of Cu-15Ni-8Sn alloy in different aging conditions","authors":"Yi Gao ,&nbsp;Ziyan Zhang ,&nbsp;Jinjuan Cheng ,&nbsp;Chaoqiang Liu ,&nbsp;Kechao Zhou ,&nbsp;Xueping Gan","doi":"10.1016/j.matchar.2024.114519","DOIUrl":"10.1016/j.matchar.2024.114519","url":null,"abstract":"<div><div>Cu-15Ni-8Sn (wt%) alloy has been widely used in engineering applications due to its excellent mechanical strength, wear, and corrosion resistance. However, low-temperature oxidation (LTO) poses a significant challenge, restricting its further application and longevity. In this study, the low-temperature oxidation behavior of the Cu-15Ni-8Sn alloy under different aging condition was investigated using multi-scale characterization by SEM and TEM. The characterization results reveal the oxide films of the aged sample contain tri-layers at low temperature, the outermost layer is dominated by CuO and Cu<sub>2</sub>O, the middle oxide layer contains of Cu<sub>2</sub>O, NiO, SnO<sub>2</sub> and SnO, and the inner oxide layer is composed of NiO and SnO<sub>2</sub>. In addition, the as-quenched sample has superior oxidation resistance compared to the aged samples, and the oxidation resistance of the aged samples decreases with the increase of aging time. That is, there is a trade-off between hardness and oxidation resistance in aged Cu-15Ni-8Sn alloys. Therefore, these findings provided a way to adjust the aging parameter based on specific service conditions.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114519"},"PeriodicalIF":4.8,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信