Sen Du , Mingtao Wang , Shengen Zhang , Zhengfeng Lv , Zhiyuan Xu , Chen Liu , Jingtao Wang , Jun Liu , Bo Liu
{"title":"Effect of micron-sized inclusions on the corrosion behavior of recycled Al-Zn-Mg-Cu alloy sheet","authors":"Sen Du , Mingtao Wang , Shengen Zhang , Zhengfeng Lv , Zhiyuan Xu , Chen Liu , Jingtao Wang , Jun Liu , Bo Liu","doi":"10.1016/j.matchar.2024.114517","DOIUrl":"10.1016/j.matchar.2024.114517","url":null,"abstract":"<div><div>The remelted aluminum scrap exhibits elevated inclusion levels, a condition inadequately addressed by contemporary refining methodologies, particularly with respect to the extraction of diminutive inclusions. The objective of this investigation is to delineate the repercussions of micron-scale inclusions on the corrosion behavior of recycled Al-Zn-Mg-Cu alloy sheets. Aluminum melts, varying in cleanliness, were reprocessed into sheet form and subsequently underwent solution-aging and annealing. Through electrochemical examinations and microstructure characterization, the study assessed the influence of inclusions on the corrosion resistance of the recycled Al-Zn-Mg-Cu alloy within an environment of near-neutral pH containing chlorine. The findings suggest that the presence of inclusions in recycled aluminum predominantly affects corrosion resistance by inducing microdefects in the neighboring matrix and by changing the grain structure. The shift in grain structure is particularly influential on the electrochemical properties of the recycled sheets, with an enhanced effect in the specimens treated with solid solution-aging.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114517"},"PeriodicalIF":4.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tengfeng Feng , Zhanglai Pan , Ningxin Li , Peiqian Zhang , Shanglin Zhang , Xinkai Ma
{"title":"Achieving an excellent combination of strength and ductility in metastable β titanium alloys via coupling isothermal ω phase and TRIP/TWIP effects","authors":"Tengfeng Feng , Zhanglai Pan , Ningxin Li , Peiqian Zhang , Shanglin Zhang , Xinkai Ma","doi":"10.1016/j.matchar.2024.114531","DOIUrl":"10.1016/j.matchar.2024.114531","url":null,"abstract":"<div><div>TRIP/TWIP metastable β titanium alloys demonstrate high strain hardening rates and excellent tensile ductility. However, the precipitation of nanometer-sized ω phase through microstructural control significantly improves strength but often results in a significant decrease in ductility. This research proposes a novel strategy by precipitating isothermal ω phase (ω<sub>iso</sub>) and integrating mechanical twinning/martensitic transformation to address these challenges. The single-phase β coarse-grained (CG) specimens of metastable Ti<img>25Nb (at.%) alloy were subjected to solution treatment in the β phase region, followed by aging at 300 °C for 60 min to obtain CG60. The ω<sub>iso</sub>-reinforced CG60 specimen exhibited a 12 % uniform elongation (1 % higher than CG specimen) and a yield strength of 857 MPa (approximately 67 % higher than CG specimens). In the CG60 specimen, deformation mechanisms were mainly attributed to the TRIP, TWIP and dislocation slip, with TWIP being predominant. As aging time increased, ω phase (localized barriers) and improved β matrix stability progressively suppressed TRIP and TWIP effects, with TWIP being completely inhibited first. Transmission electron microscopy and computational findings suggest that larger ω phase contributes more significantly to the precipitation strengthening.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114531"},"PeriodicalIF":4.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhan Zhang , Jingtai Yu , Xiaoran Wei , Kun Zhou , Weifei Niu , Yushun Wei , Cong Zhao , Gang Chen , Fengmin Jin , Kai Song
{"title":"A soft scanning electron microscopy for efficient segmentation of alloy microstructures based on a new self-supervised pre-training deep learning network","authors":"Jinhan Zhang , Jingtai Yu , Xiaoran Wei , Kun Zhou , Weifei Niu , Yushun Wei , Cong Zhao , Gang Chen , Fengmin Jin , Kai Song","doi":"10.1016/j.matchar.2024.114532","DOIUrl":"10.1016/j.matchar.2024.114532","url":null,"abstract":"<div><div>To provide an on-site metallographic segmentation using only optical microscopy images, sSEM-Net, a soft scanning electron microscopy network, is developed based on a self-supervised pre-training deep learning framework. During model training, only a sparse collection of SEM images is necessary for annotation assistance. By integrating CNN and Transformer, sSEM-Net efficiently utilizes global context information while mitigating data dependency and computational resource constraints. Using only readily available optical microscopy images as input, sSEM-Net achieves metallographic segmentation comparable to SEM images, catering to rapid and cost-effective industrial needs. This methodology leverages non-destructive inspection attributes, catering to rapid and cost-sensitive industrial requirements. The efficacy of the proposed sSEM-Net is demonstrated through metallographic structure analysis of TC4 titanium alloy, with potential extensions to other alloy types.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114532"},"PeriodicalIF":4.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Liu, Zheye Liu, Ye Zhang, Yu Xiao, Zhiyuan Feng, Kaiyu Zhang, Wanliang Zhang, Chengshuang Zhou, Lin Zhang
{"title":"Synergistic regulation of nano-precipitates and reversed austenite in titanium-free maraging steel by low-temperature solution treatment and double aging treatment","authors":"Xin Liu, Zheye Liu, Ye Zhang, Yu Xiao, Zhiyuan Feng, Kaiyu Zhang, Wanliang Zhang, Chengshuang Zhou, Lin Zhang","doi":"10.1016/j.matchar.2024.114499","DOIUrl":"10.1016/j.matchar.2024.114499","url":null,"abstract":"<div><div>To synergistically enhance the strength and toughness of titanium-free maraging steel, a multi-scale characterization method was used to illustrate the effects of low-temperature solution treatment and double aging treatment on the microstructure of titanium-free maraging steel in this paper. After the low-temperature solution treatment and the double aging treatment, the tensile strength of titanium-free maraging steel increased from 1954 MPa to 2160 MPa and the elongation increased by 8.95 %. By the low-temperature solution treatment, the original austenite grain size of the titanium-free maraging steel was refined to 0.69 μm. The double aging treatment promoted the diffusion of Mo and Ni elements, increased the volume fraction of ω phase, Ni<sub>3</sub>Mo nano-precipitation phase and reversed austenite, and refined the size of ω phase and Ni<sub>3</sub>Mo by 14.2 % and 7.9 %, respectively. The nanoparticles of titanium-free maraging steel mainly include the ω phase, Ni<sub>3</sub>Mo and Laves phase. The strengthening mechanism of nanoparticles was quantitatively evaluated from the shear mechanism and Orowan dislocation loop mechanism. The mechanism shows that the ω phase is the main contributor to the overall precipitation strengthening. Therefore, low-temperature solution treatment and double aging treatment provide a potential solution for achieving high strength and high toughness in maraging steel.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114499"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructural evolution, crystallographic texture, grain morphology, and mechanical integrity of wire arc additively manufactured Inconel 625 alloy","authors":"Gaurav Kishor , Krishna Kishore Mugada , Raju Prasad Mahto , Aravindan Sivanandam , Ravi Kumar Digavalli , Murugaiyan Amirthalingam","doi":"10.1016/j.matchar.2024.114525","DOIUrl":"10.1016/j.matchar.2024.114525","url":null,"abstract":"<div><div>The material in wire arc additive manufacturing (WAAM) undergoes complex material flow and multiple thermal heating and cooling cycles, forming highly heterogeneous microstructures in terms of size, crystallographic orientations, and mechanical properties. The inhomogeneity also depends on the dislocation density and phases, which are influenced by the thermal history of the process. In this study, the Cold Metal Transfer (CMT) process was used to deposit a 60-layer build of Inconel 625 alloy. Detailed variations in the microstructural size, orientations, and phases along the building direction were studied using optical microscopy, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). Microstructural observations reveal dendrites, equiaxed crystals, cellular, and columnar structures with primary and secondary dendrites. Dynamic recrystallization (DRX) followed by abnormal grain growth was found in the build. The average grain size varies with deposited height, with a grain size of around 13 ± 1 μm near the substrate, 45 ± 1 μm in the middle region, and 18 ± 1 μm at the top. The top region exhibited a strong intensity of recrystallized Cube, Cube-ND, and Cube-RD textures, with weaker intensities of copper and brass textures. The middle and bottom regions show strong intensities of Goss, copper, F, S, and E textures, respectively. The highest dislocation density of 5.122 × 10<sup>−4</sup> nm<sup>−2</sup> was found in the top region, while the lowest (4.14 × 10<sup>−4</sup> nm<sup>−2</sup>) was observed in the bottom region. The ultimate tensile strength of the build ranged from 603 ± 05 MPa to 699 ± 10 MPa, while the yield strength varied from 313 ± 07 MPa to 365 ± 08 MPa along different orientations. Vickers hardness results showed a slight variation, from 240 ± 5 to 260 ± 2 HV, from bottom to the top of the deposited build. The findings from this study provide valuable insights into the microstructural evolution mechanism and mechanical behavior of WAAM-fabricated Inconel 625, which can guide other researchers in optimizing process parameters, enhancing material properties, and understanding the effects of thermal history on additive manufacturing of high-performance alloys.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114525"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wang, Fugang Chen, Xiaoli Wang, Yong Zhao, Juan Fu
{"title":"A trade-off between the diffusion depth, the thickness of the Tb-rich shell and the surface grain coarsening during the grain boundary diffusion of sintered Nd-Ce-Fe-B magnets","authors":"Jie Wang, Fugang Chen, Xiaoli Wang, Yong Zhao, Juan Fu","doi":"10.1016/j.matchar.2024.114527","DOIUrl":"10.1016/j.matchar.2024.114527","url":null,"abstract":"<div><div>The grain boundary diffusion process (GBDP) has become one of the main methods to enhance the coercivity of Nd-Ce-Fe-B magnets. In this study, we examined how the magnetic properties of sintered Nd-Ce-Fe-B magnets are influenced by the combined impacts of diffusion depth, Tb-rich shell thickness, and surface grain coarsening after conducting grain boundary diffusion. There exists a trade-off between achieving a desired diffusion depth and avoiding excessive surface grain coarsening. To examine this trade-off, samples with varying diffusion depths were prepared through controlled diffusion time. Results revealed that compared to the original annealed magnets, the coercivity increments of the magnets diffused for 1 h and 3 h were 148 kA/m and 290 kA/m, respectively, while the coercivity of the magnet diffused for 9 h remained nearly the same as that diffused for 3 h. Microstructural analysis indicated that surface grain coarsening intensified with increasing diffusion time, leading to a reduction in the surface diffusion channels, thereby diminishing diffusion efficiency. In addition, strong mutual diffusion was observed between the magnet and the diffusion source. Furthermore, micromagnetic simulation studies revealed that severe surface grain coarsening limits the enhancement of coercivity even with increased depth of diffusion and thickness of the Tb-rich shell layer. This study offers valuable insights into the correlation between diffusion depth, Tb-rich shell thickness, surface grain coarsening, and the ultimate magnetic properties in sintered Nd-Ce-Fe-B magnets after GBDP, providing guidance for enhancing the efficiency of GBDP.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114527"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxuan Zhang , Xinhao Liu , Rengeng Li , He Wu , Yi Ma , Kesong Miao , Hao Wu , Xuewen Li , Guohua Fan
{"title":"Effects of defects on the high-temperature performance of selective laser melting K418 superalloys: An in-situ 3D X-ray analysis","authors":"Xiaoxuan Zhang , Xinhao Liu , Rengeng Li , He Wu , Yi Ma , Kesong Miao , Hao Wu , Xuewen Li , Guohua Fan","doi":"10.1016/j.matchar.2024.114533","DOIUrl":"10.1016/j.matchar.2024.114533","url":null,"abstract":"<div><div>Defects are inevitable in selective laser melting process, significantly impacting the mechanical properties of materials and reducing their service life. In this study, the effects of various defects and their distribution on the high-temperature mechanical performance of the selective laser melted K418 superalloys were investigated via an in-situ 3D X-ray analysis and finite element method. The results showed that the selective laser melting process can significantly enhance the strength of the K418 sample, while degrading the fracture elongation. The sphericity and location of defects are the two key parameters influencing the mechanical performance. The defects with low sphericity at the sub-surface resulted in elevated local stress and strain, accounting for the significant degradation in fracture elongation. Locally increased stress and accumulated strain around lack of fusion defects at the sub-surface contribute to the initiation and propagation of crack. This study provides inspiration for understanding the correlation between the defects and mechanical properties.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114533"},"PeriodicalIF":4.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arnold Pradhan , Fei Xu , Daniele Salvato , Indrajit Charit , Colin Judge , Luca Capriotti , Tiankai Yao
{"title":"Characterization of Fuel Cladding Chemical Interaction on a High Burnup U-10Zr Metallic Fuel via Electron Energy Loss Spectroscopy Enhanced by Machine Learning","authors":"Arnold Pradhan , Fei Xu , Daniele Salvato , Indrajit Charit , Colin Judge , Luca Capriotti , Tiankai Yao","doi":"10.1016/j.matchar.2024.114524","DOIUrl":"10.1016/j.matchar.2024.114524","url":null,"abstract":"<div><div>Fuel cladding chemical interaction (FCCI) plays a key role in limiting the performance of metallic fuels in nuclear applications. A comprehensive analysis of chemical elements present in FCCI region is the basis for understanding the phenomena and developing potential mitigating strategies. The detection of low atomic number elements (Z < 11) and lanthanide fission products is challenging for energy dispersive x-ray spectroscopy (EDS). This work used scanning transmission electron microscopy (STEM) based electron energy loss spectroscopy (EELS) to study the distribution of carbon and lanthanides in the FCCI region of a solid U-10Zr (wt%) fuel irradiated to 13.2 at. % burnup at the Fast Flux Testing Facility (FFTF). Processing the STEM-EELS data involved three major steps: 1) enhancing the signal-to-noise ratio by denoising the STEM-EELS spectra using principal component analysis (PCA) methods; 2) identification and mapping of chemical elements with core energy loss edges; 3) microstructural phase segmentation using the K-means clustering method. STEM-EELS analysis indicated the formation of zirconium carbide, a rind-like microstructural phase, in the FCCI region between fuel and cladding. The rind appeared to remain intact at this location for the studied burnup. The study also revealed a shift in the plasmon peak between zirconium-rich region and zirconium carbide. The STEM-EELS mappings demonstrated a different distribution of Ce from other lanthanide elements, such as La, Pr, and Nd, suggesting that the effect of lanthanides in the FCCI region should be separately investigated. The use of K-means clustering method on the STEM-EELS spectra of the FCCI region revealed different phases, especially Fe-Ce and Zr-C, that concurred with the findings from STEM-EELS elemental mappings.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114524"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenlu Zhou , Chen Shen , Lin Wang , Ting Zhang , Ying Li , Jianwen Xin , Yuelong Zhang , Fang Li , Yuhan Ding , Kanglong Wu , Danqi Zhang , Xueming Hua
{"title":"High cycle fatigue properties of Ti-48Al-2Cr-2Nb alloy additively manufactured via twin-wire directed energy deposition-arc","authors":"Wenlu Zhou , Chen Shen , Lin Wang , Ting Zhang , Ying Li , Jianwen Xin , Yuelong Zhang , Fang Li , Yuhan Ding , Kanglong Wu , Danqi Zhang , Xueming Hua","doi":"10.1016/j.matchar.2024.114526","DOIUrl":"10.1016/j.matchar.2024.114526","url":null,"abstract":"<div><div>Recently, additive manufacturing for titanium aluminide has received sustained attention. Considering the extensive applications on low pressure turbine blades in aerospace field, dynamic mechanical properties of titanium aluminide, especially the fatigue properties, are of great importance. In present work, fatigue test at ambient temperature was conducted for the first time on twin-wire directed energy deposition-arc (TW-DED-arc) fabricated Ti-48Al-2Cr-2Nb alloy with equiaxed lamellar colonies. More detailed researches on fatigue fracture characteristics and deformation modes are also investigated. The experiment results indicate that TW-DED-arc fabricated Ti-48Al-2Cr-2Nb alloy exhibits flat S–N behavior with a good resistance to fatigue. Fatigue life fluctuates widely at same stress level, but such fluctuations gradually weaken as stress decreases. Furthermore, γ/α<sub>2</sub> interface and lamellar colony boundary as well as special microstructures of as-fabricated Ti-48Al-2Cr-2Nb alloy are weak areas during fatigue process, which easily become crack nucleation sites. As stress level decreases, deformation mode of as-fabricated Ti-48Al-2Cr-2Nb alloy translates from twinning and dislocation slip to predominantly dislocation slip. In general, these findings provide an important reference for engineering applications of titanium aluminide.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114526"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing strength-ductility synergy in nano-sized TiB2/Al composite via rapid solidification and thermo-mechanical processing","authors":"Lei Wang , Zhe Chen , Sanqiang Yang , Haowei Wang","doi":"10.1016/j.matchar.2024.114529","DOIUrl":"10.1016/j.matchar.2024.114529","url":null,"abstract":"<div><div>The Al-Cu-Mn (AA2219) composite reinforced by 5 wt% nano-sized TiB<sub>2</sub> particles were fabricated by hot isostatic pressing (HIP) combined with thermal-mechanical processing to achieve a superior strength-ductility combination. Coupling the comprehensive characterizations and microstructure-based analysis, the strength-ductility mechanisms were deeply understood. Results reveal that the uniform dispersed nano-sized TiB<sub>2</sub> particles under the current preparation process helps to improve the mechanical properties of the composite. The introduction of pre-stretch before artificial aging produced a fine θ' and S precipitates. By combining high-resolution TEM and crystal structure analysis, Al(Cu) and S phase at TiB<sub>2</sub>/Al interface were identified, and their mismatch (δ) with Al were 3.8 % and 4.8 %, respectively. Mechanisms related to pre-stretch effects on the formation of dislocation, θ' and S precipitates and corresponding structures are discussed, as well as the implications of TiB<sub>2</sub>/Al interface characteristics on strength and ductility.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114529"},"PeriodicalIF":4.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}