热压烧结制备(Sm0.75Zr0.25)(Fe0.8Co0.2)11Ti纳米晶磁体的组织演变与性能优化

IF 5.5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
L. Huang, Y.H. Hou, Z.P. Xu, J.P. Liu, X.Y. Cheng, W.Y. Yu, Y.F. Huang, W. Li, J.M. Luo, Y.L. Huang
{"title":"热压烧结制备(Sm0.75Zr0.25)(Fe0.8Co0.2)11Ti纳米晶磁体的组织演变与性能优化","authors":"L. Huang,&nbsp;Y.H. Hou,&nbsp;Z.P. Xu,&nbsp;J.P. Liu,&nbsp;X.Y. Cheng,&nbsp;W.Y. Yu,&nbsp;Y.F. Huang,&nbsp;W. Li,&nbsp;J.M. Luo,&nbsp;Y.L. Huang","doi":"10.1016/j.matchar.2025.115606","DOIUrl":null,"url":null,"abstract":"<div><div>The ThMn<sub>12</sub>-type SmFe<sub>12</sub>-based compound exhibits remarkable intrinsic magnetic properties, making it a promising candidate for advanced magnets. However, the production of bulk magnets with superior magnetic properties remains challenging due to its thermodynamic instability. This work fabricated (Sm<sub>0.75</sub>Zr<sub>0.25</sub>)(Fe<sub>0.8</sub>Co<sub>0.2</sub>)<sub>11</sub>Ti nanocrystalline magnets via hot-pressing sintering, revealing microstructure-properties relationships. Specimens sintered for 20 min achieved maximal 1:12 phase content, uniform microstructure, and high density, yielding optimal room-temperature magnetic properties: a coercivity of 4.46 kOe, a maximum magnetic energy product of 49 kJ/m<sup>3</sup>, and exceptional thermal stability. Additionally, this research shows that the presence and increased content of twinned grains hinder improved magnetic properties. These findings shed light on fabricating isotropic nanocrystalline sintered magnets and offer critical guidance for optimizing the microstructure of ThMn<sub>12</sub>-type magnet.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"229 ","pages":"Article 115606"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution and properties optimization of (Sm0.75Zr0.25)(Fe0.8Co0.2)11Ti nanocrystalline magnets produced via hot-pressing sintering\",\"authors\":\"L. Huang,&nbsp;Y.H. Hou,&nbsp;Z.P. Xu,&nbsp;J.P. Liu,&nbsp;X.Y. Cheng,&nbsp;W.Y. Yu,&nbsp;Y.F. Huang,&nbsp;W. Li,&nbsp;J.M. Luo,&nbsp;Y.L. Huang\",\"doi\":\"10.1016/j.matchar.2025.115606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ThMn<sub>12</sub>-type SmFe<sub>12</sub>-based compound exhibits remarkable intrinsic magnetic properties, making it a promising candidate for advanced magnets. However, the production of bulk magnets with superior magnetic properties remains challenging due to its thermodynamic instability. This work fabricated (Sm<sub>0.75</sub>Zr<sub>0.25</sub>)(Fe<sub>0.8</sub>Co<sub>0.2</sub>)<sub>11</sub>Ti nanocrystalline magnets via hot-pressing sintering, revealing microstructure-properties relationships. Specimens sintered for 20 min achieved maximal 1:12 phase content, uniform microstructure, and high density, yielding optimal room-temperature magnetic properties: a coercivity of 4.46 kOe, a maximum magnetic energy product of 49 kJ/m<sup>3</sup>, and exceptional thermal stability. Additionally, this research shows that the presence and increased content of twinned grains hinder improved magnetic properties. These findings shed light on fabricating isotropic nanocrystalline sintered magnets and offer critical guidance for optimizing the microstructure of ThMn<sub>12</sub>-type magnet.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"229 \",\"pages\":\"Article 115606\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580325008952\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325008952","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

thmn12型smfe12基化合物具有显著的内在磁性,使其成为先进磁体的有希望的候选者。然而,由于其热力学不稳定性,具有优异磁性能的体磁铁的生产仍然具有挑战性。通过热压烧结制备了(Sm0.75Zr0.25)(Fe0.8Co0.2)11Ti纳米晶磁体,揭示了微观结构与性能的关系。烧结20分钟的试样获得了最大1:12相含量,均匀的微观结构和高密度,产生了最佳的室温磁性能:矫顽力为4.46 kOe,最大磁能积为49 kJ/m3,以及出色的热稳定性。此外,本研究表明,孪生晶粒的存在和含量的增加阻碍了磁性能的提高。这些发现为制备各向同性纳米晶烧结磁体提供了思路,并为优化thmn12型磁体的微观结构提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure evolution and properties optimization of (Sm0.75Zr0.25)(Fe0.8Co0.2)11Ti nanocrystalline magnets produced via hot-pressing sintering
The ThMn12-type SmFe12-based compound exhibits remarkable intrinsic magnetic properties, making it a promising candidate for advanced magnets. However, the production of bulk magnets with superior magnetic properties remains challenging due to its thermodynamic instability. This work fabricated (Sm0.75Zr0.25)(Fe0.8Co0.2)11Ti nanocrystalline magnets via hot-pressing sintering, revealing microstructure-properties relationships. Specimens sintered for 20 min achieved maximal 1:12 phase content, uniform microstructure, and high density, yielding optimal room-temperature magnetic properties: a coercivity of 4.46 kOe, a maximum magnetic energy product of 49 kJ/m3, and exceptional thermal stability. Additionally, this research shows that the presence and increased content of twinned grains hinder improved magnetic properties. These findings shed light on fabricating isotropic nanocrystalline sintered magnets and offer critical guidance for optimizing the microstructure of ThMn12-type magnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信