{"title":"Single-cell atlas profiling revealed cellular characteristics and dynamic changes after PD-1 blockade therapy of brain metastases from laryngeal squamous cell carcinoma.","authors":"Yunzhi Zou, Hao Duan, Zekun Deng, Rong Xiang, Jixiang Zhao, Zhenhua Zhang, Wanming Hu, Yuanzhong Yang, Zeming Yan, Shujuan Wen, Zexian Liu, Gao Zhang, Yonggao Mou, Depei Li, Xiaobing Jiang","doi":"10.1007/s11010-024-05064-3","DOIUrl":"10.1007/s11010-024-05064-3","url":null,"abstract":"<p><p>Brain metastasis (BM) in laryngeal squamous cell carcinoma (LSCC) is uncommon but prognosis is poor. Anti-PD-1 immunotherapy benefits some advanced LSCC cases, yet its efficiency is limited by tumor complexity. We analyzed paired metastatic tumor samples from before and after immunotherapy using single-cell RNA sequencing (scRNA-seq), along with a primary LSCC dataset and bulk RNA sequencing. This identified changes post-immunotherapy and revealed differences in single-cell transcriptomes among LSCC, primBM, and neoBM. Our findings show that anti-PD-1 treatment suppresses metastasis-promoting pathways like VEGF and EMT in cancer cells, and alters immune cell functions. Notably, it upregulates T cell activation, leading to CD8 T cell exhaustion from excess heat shock proteins, notably HSPA8. However, CD8 T cell cytotoxic functions improve post-treatment. In myeloid cells, anti-PD-1 therapy enhances antigen presentation and promotes a proinflammatory shift post-metastasis. Additionally, NUPR1 is linked to BM in LSCC, and NEAT1 is a potential metastatic cancer cell cycle participant. Our study provides insights into cancer heterogeneity and the impact of PD-1 immunotherapy on metastasis, aiding precise diagnosis and prognosis.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2377-2400"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"miRNA biomarkers to predict risk of primary non-function of fatty allografts and drug induced acute liver failures.","authors":"Juliette Schönberg, Jürgen Borlak","doi":"10.1007/s11010-024-05129-3","DOIUrl":"10.1007/s11010-024-05129-3","url":null,"abstract":"<p><p>Primary non-function (PNF) of an allograft defines an irreversible graft failure and although rare, constitutes a life-threatening condition that requires high-urgency re-transplantation. Equally, drug induced acute liver failures (ALF) are seldom but the rapid loss of hepatic function may require orthotropic liver transplantation (OLT). Recently, we reported the development of a rodent PNF-disease model of fatty allografts and showed that a dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of PNF. Based on findings from the rat PNF-disease model, we selected 15 miRNA-biomarker candidates for clinical validation and performed RT-qPCRs in well-documented PNF cases following OLT of fatty allografts. To assess specificity and selectivity, we compared their regulation in pre- and intraoperative liver biopsies and pre- and post-operative blood samples of patients undergoing elective hepatobiliary surgery. Additionally, we assessed their regulation in drug induced ALF. We confirmed clinical relevance for 11 PNF-associated miRNAs and found expression of miRNA-27b-3p, miRNA-122-3p, miRNA-125a-5p, miRNA-125b-5p and miRNA-192-5p to correlate with the hepatic steatosis grades. Furthermore, we demonstrate selectivity and specificity for the biomarker candidates with opposite regulation of let-7b-5p, miRNA-122-5p, miRNA-125b-5p and miRNA-194-5p in blood samples of patients following successful OLTs and/or liver resection. Moreover, by considering findings from 21 independent ALF-studies, we observed nine PNF-associated miRNAs regulated in common. We report miRNAs highly regulated in PNF and ALF, and their common regulation in different diseases broadens the perspective as biomarker candidates. Our study warrants independent confirmation in randomized clinical trials.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2573-2593"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting RAGE-signaling pathways in the repair of rotator-cuff injury.","authors":"Vikrant Rai, Vinitha Deepu, Devendra K Agrawal","doi":"10.1007/s11010-024-05132-8","DOIUrl":"10.1007/s11010-024-05132-8","url":null,"abstract":"<p><p>Rotator cuff injury (RCI) is a common musculoskeletal problem that can have a significant impact on the quality of life and functional abilities of those affected. Novel therapies, including proteomics-based, stem cells, platelet-rich plasma, and exosomes, are being developed to promote rotator-cuff healing. The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor that is expressed on several cell types and is implicated in several physiologic and pathological processes, such as tissue repair, inflammation, and degeneration. Because of its capacity to bind with a variety of ligands and initiate signaling pathways that lead to inflammatory responses in RCI, RAGE plays a crucial role in inflammation. In this critical review article, we discussed the role of RAGE-mediated persistent inflammation in RCI followed by novel factors including PKCs, TIRAP, DIAPH1, and factors related to muscle injury with their therapeutic potential in RCI. These factors involve various aspects of muscle injury and signaling and the possibility of targeting these factors to improve the clinical outcomes in RCI still needs further investigation.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2539-2554"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed M Abou-Shanab, Ola A Gaser, Mariam Waleed Soliman, Alaa Oraby, Radwa Ayman Salah, Mahmoud Gabr, Amira Abdel Fattah Edris, Ihab Mohamed, Nagwa El-Badri
{"title":"Human amniotic membrane scaffold enhances adipose mesenchymal stromal cell mitochondrial bioenergetics promoting their regenerative capacities.","authors":"Ahmed M Abou-Shanab, Ola A Gaser, Mariam Waleed Soliman, Alaa Oraby, Radwa Ayman Salah, Mahmoud Gabr, Amira Abdel Fattah Edris, Ihab Mohamed, Nagwa El-Badri","doi":"10.1007/s11010-024-05094-x","DOIUrl":"10.1007/s11010-024-05094-x","url":null,"abstract":"<p><p>The human amniotic membrane (hAM) has been applied as a scaffold in tissue engineering to sustain stem cells and enhance their regenerative capacities. We investigated the molecular and biochemical regulations of mesenchymal stromal cells (MSCs) cultured on hAM scaffold in a three-dimensional (3D) setting. Culture of adipose-MSCs (AMSCs) on decellularized hAM showed significant improvement in their viability, proliferative capacity, resistance to apoptosis, and enhanced MSC markers expression. These cultured MSCs displayed altered expression of markers associated with pro-angiogenesis and inflammation and demonstrated increased potential for differentiation into adipogenic and osteogenic lineages. The hAM scaffold modulated cellular respiration by upregulating glycolysis in MSCs as evidenced by increased glucose consumption, cellular pyruvate and lactate production, and upregulation of glycolysis markers. These metabolic changes modulated mitochondrial oxidative phosphorylation (OXPHOS) and altered the production of reactive oxygen species (ROS), expression of OXPHOS markers, and total antioxidant capacity. They also significantly boosted the urea cycle and altered the mitochondrial ultrastructure. Similar findings were observed in bone marrow-derived MSCs (BMSCs). Live cell imaging of BMSCs cultured in the same 3D environment revealed dynamic changes in cellular activity and interactions with its niche. These findings provide evidence for the favorable properties of hAM as a biomimetic scaffold for enhancing the in vitro functionality of MSCs and supporting their potential usefulness in clinical applications.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2611-2632"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mannthalah Abubaker, Janelle E Stanton, Olwyn Mahon, Andreas M Grabrucker, David Newport, John J E Mulvihill
{"title":"Amyloid beta-induced signalling in leptomeningeal cells and its impact on astrocyte response.","authors":"Mannthalah Abubaker, Janelle E Stanton, Olwyn Mahon, Andreas M Grabrucker, David Newport, John J E Mulvihill","doi":"10.1007/s11010-024-05151-5","DOIUrl":"10.1007/s11010-024-05151-5","url":null,"abstract":"<p><p>The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2645-2660"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiani Zhao, Yacheng Xiong, Yu Liu, Jin Ling, Shuai Liu, Wei Wang
{"title":"Endothelium Piezo1 deletion alleviates experimental varicose veins by attenuating perivenous inflammation.","authors":"Jiani Zhao, Yacheng Xiong, Yu Liu, Jin Ling, Shuai Liu, Wei Wang","doi":"10.1007/s11010-024-05115-9","DOIUrl":"10.1007/s11010-024-05115-9","url":null,"abstract":"<p><p>Previous large-scale genetic studies have prioritized the causal genes piezo type mechanosensitive ion channel component 1 (PIEZO1) and castor zinc finger 1 (CASZ1) associated with varicose veins (VVs). This study aims to evaluate their roles in both clinical and experimental VVs. In this study, we investigated abundance of PIEZO1 and CASZ1 in both varicose and normal veins from the same patients. Yoda1 (a selective PIEZO1 agonist, 2.6 mg/kg/day) or vehicle was administered intraperitoneally for 3 weeks to evaluate the effect of PIEZO1 activation on experimental VVs. Subsequently, endothelial Piezo1 deletion mice (Piezo1<sup>iΔEC</sup> mice) were generated to explored the role of endothelial PIEZO1 on VVs. Laser speckle imaging, flow cytometry, cell tracing with Evans blue or rhodamine-6G, and histopathological staining were utilized to evaluate the pathophysiology of VVs. Our results showed that mRNA expression of PIEZO1, but not CASZ1, was abundant and increased in clinical VVs. The Piezo1<sup>tP1-td</sup> mice revealed endothelium-specific expression of PIEZO1 in mice veins. By establishing iliac vein ligation-induced VVs in mice, Yoda1 exacerbated experimental VVs with increased inflammatory cell infiltration. Subsequently, endothelial Piezo1 deletion (Piezo1<sup>iΔEC</sup> mice) alleviated experimental VVs and vascular remodeling by directly reducing vascular permeability and leukocyte-endothelium interactions compared to the control (Piezo1<sup>fl/fl</sup> mice). PIEZO1 is highly expressed in clinical VVs, meanwhile, activation or inhibition of PIEZO1 exerts a remarkable effect on experimental VVs. Furthermore, Piezo1 may constitute a potential therapeutic approach for the medical treatment of VVs.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2423-2435"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhe Zhao, Dan He, Jinyu Wang, Yu Xiao, Lixin Gong, Can Tang, Haibo Peng, Xuemei Qiu, Rui Liu, Tao Zhang, Jingyi Li
{"title":"Swertiamarin relieves radiation-induced intestinal injury by limiting DNA damage.","authors":"Zhe Zhao, Dan He, Jinyu Wang, Yu Xiao, Lixin Gong, Can Tang, Haibo Peng, Xuemei Qiu, Rui Liu, Tao Zhang, Jingyi Li","doi":"10.1007/s11010-024-05030-z","DOIUrl":"10.1007/s11010-024-05030-z","url":null,"abstract":"<p><p>Radiotherapy is the conventional treatment for pelvic abdominal tumors. However, it can cause some damage to the small intestine and colorectal, which are very sensitive to radiation. Radiation-induced intestinal injury (RIII) affects the prognosis of radiotherapy, causing sequelae of loss of function and long-term damage to patients' quality of life. Swertiamarin is a glycoside that has been reported to prevent a variety of diseases including but not limited to diabetes, hypertension, atherosclerosis, arthritis, malaria, and abdominal ulcers. However, its therapeutic effect and mechanism of action on RIII have not been established. We investigated whether swertiamarin has a protective effect against RIII. In this article, we use irradiator to create cellular and mouse models of radiation damage. Preventive administration of swertiamarin could reduce ROS and superoxide anion levels to mitigate the cellular damage caused by radiation. Swertiamarin also attenuated RIII in mice, as evidenced by longer survival, less weight loss and more complete intestinal barrier. We also found an increase in the relative abundance of primary bile acids in irradiated mice, which was reduced by both FXR agonists and swertiamarin, and a reduction in downstream interferon and inflammatory factors via the cGAS-STING pathway to reduce radiation-induced damage.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2277-2290"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving effect of physical exercise on heart failure: Reducing oxidative stress-induced inflammation by restoring Ca<sup>2+</sup> homeostasis.","authors":"Shunling Yuan, Zhongkai Kuai, Fei Zhao, Diqun Xu, Weijia Wu","doi":"10.1007/s11010-024-05124-8","DOIUrl":"10.1007/s11010-024-05124-8","url":null,"abstract":"<p><p>Heart failure (HF) is associated with the occurrence of mitochondrial dysfunction. ATP produced by mitochondria through the tricarboxylic acid cycle is the main source of energy for the heart. Excessive release of Ca<sup>2+</sup> from myocardial sarcoplasmic reticulum (SR) in HF leads to excessive Ca<sup>2+</sup> entering mitochondria, which leads to mitochondrial dysfunction and REDOX imbalance. Excessive accumulation of ROS leads to mitochondrial structure damage, which cannot produce and provide energy. In addition, the accumulation of a large number of ROS can activate NF-κB, leading to myocardial inflammation. Energy deficit in the myocardium has long been considered to be the main mechanism connecting mitochondrial dysfunction and systolic failure. However, exercise can improve the Ca<sup>2+</sup> imbalance in HF and restore the Ca<sup>2+</sup> disorder in mitochondria. Similarly, exercise activates mitochondrial dynamics to improve mitochondrial function and reshape intact mitochondrial structure, rebalance mitochondrial REDOX, reduce excessive release of ROS, and rescue cardiomyocyte energy failure in HF. In this review, we summarize recent evidence that exercise can improve Ca<sup>2+</sup> homeostasis in the SR and activate mitochondrial dynamics, improve mitochondrial function, and reduce oxidative stress levels in HF patients, thereby reducing chronic inflammation in HF patients. The improvement of mitochondrial dynamics is beneficial for ameliorating metabolic flow bottlenecks, REDOX imbalance, ROS balance, impaired mitochondrial Ca<sup>2+</sup> homeostasis, and inflammation. Interpretation of these findings will lead to new approaches to disease mechanisms and treatment.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2471-2486"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeyu Miao, Xiaorong Zhang, Yang Xu, Yan Liu, Qing Yang
{"title":"Unveiling the nexus: pyroptosis and its crucial implications in liver diseases.","authors":"Zeyu Miao, Xiaorong Zhang, Yang Xu, Yan Liu, Qing Yang","doi":"10.1007/s11010-024-05147-1","DOIUrl":"10.1007/s11010-024-05147-1","url":null,"abstract":"<p><p>Pyroptosis, a distinctive form of programmed cell death orchestrated by gasdermin proteins, manifests as cellular rupture, accompanied by the release of inflammatory factors. While pyroptosis is integral to anti-infection immunity, its aberrant activation has been implicated in tumorigenesis. The liver, as the body's largest metabolic organ, is rich in various enzymes and governs metabolism. It is also the primary site for protein synthesis. Recent years have witnessed the emergence of pyroptosis as a significant player in the pathogenesis of specific liver diseases, exerting a pivotal role in both physiological and pathological processes. A comprehensive exploration of pyroptosis can unveil its contributions to the development and regression of conditions such as hepatitis, cirrhosis, and hepatocellular carcinoma, offering innovative perspectives for clinical prevention and treatment. This review consolidates current knowledge on key molecules involved in cellular pyroptosis and delineates their roles in liver diseases. Furthermore, we discuss the potential of leveraging pyroptosis as a novel or existing anti-cancer strategy.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2159-2176"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oana-Maria Aburel, Laurențiu Brăescu, Darius G Buriman, Adrian P Merce, Anca M Bînă, Claudia Borza, Cristian Mornoș, Adrian Sturza, Danina M Muntean
{"title":"Methylene blue reduces monoamine oxidase expression and oxidative stress in human cardiovascular adipose tissue.","authors":"Oana-Maria Aburel, Laurențiu Brăescu, Darius G Buriman, Adrian P Merce, Anca M Bînă, Claudia Borza, Cristian Mornoș, Adrian Sturza, Danina M Muntean","doi":"10.1007/s11010-024-05092-z","DOIUrl":"10.1007/s11010-024-05092-z","url":null,"abstract":"<p><p>Cardiovascular diseases represent the major cause of morbidity mainly due to chronic heart failure. Epicardial (EAT) and perivascular adipose tissues (PVAT) are considered major contributors to the pathogenesis of cardiometabolic pathologies. Monoamine oxidases (MAOs) are mitochondrial enzymes recognized as sources of reactive oxygen species (ROS) in cardiometabolic pathologies. Methylene blue (MB) is one of the oldest protective agents, yet no data are available about its effects on adipose tissue. The present pilot study was aimed at assessing the effects of MB: (i) on MAO expression and (ii) oxidative stress in EAT and PVAT harvested from patients with heart failure subjected to cardiac surgery (n = 25). Adipose tissue samples were incubated with MB (0.1 µM/24 h) and used for the assessment of MAO gene and protein expression (qPCS and immune fluorescence) and ROS production (confocal microscopy and spectrophotometry). The human cardiovascular adipose tissues contain both MAO isoforms, predominantly MAO-A. Incubation with MB reduced MAOs expression and oxidative stress; co-incubation with serotonin, the MAO-A substrate, further augmented ROS generation, an effect partially reversed by MB. In conclusion, MAO-A is the major isoform expressed in EAT and PVAT and contribute to local oxidative stress; both effects can be mitigated by methylene blue.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2413-2421"},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}