{"title":"母体妊娠期糖尿病通过上调生长分化因子15促进线粒体功能障碍加重雄性后代心肌损伤的机制","authors":"Mingdong Zhu, Fengling Yin, Yanan Qiu, Yang Liu","doi":"10.1007/s11010-025-05395-9","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a prevalent metabolic disturbance in pregnancy. This study analyzed the mechanism of maternal GDM inducing myocardial injury in male offspring through growth differentiation factor-15 (GDF-15). Pregnant rats were randomly assigned to the GDM-mother (streptozotocin [STZ] induction) and the Control-mother (normal saline injection) groups. Here, 32 male offspring from the Control-mother group and 92 from the GDM-mother group were used for experiments. The myocardial ischemia model was established by left anterior descending (LAD) coronary artery ligation in 6-week-old male offspring. Male offspring in the GDM-mother group were treated with sh-Gdf15, pyrroloquinoline quinone, or rotenone. Cardiac function, oxidative stress-associated indicators, myocardial infarct size and necrosis, inflammatory infiltration, cardiomyocyte apoptosis, mitochondrial damage, and Gdf15 mRNA and protein expression were examined using echocardiography, kits, TTC/H&E/TUNEL staining, flow cytometry, RT-qPCR, and western blot. GDM maternal rats had elevated blood glucose and a reduced body weight, representing successful modeling. Prenatal STZ exposure did not affect blood glucose but decreased the body weight in male offspring. The baseline cardiac function was not affected by prenatal STZ exposure, whereas LAD ligation-induced ischemia caused severe cardiac dysfunction in GDM male offspring versus controls. GDF-15 was upregulated in GDM rat male offspring, and its knockdown alleviated myocardial injury. Adult male offspring of GDM rats exhibited pronounced mitochondrial damage, and mitochondrial homeostasis restoration improved ischemia-caused cardiac dysfunction. Suppressing mitochondrial function partly abrogated cardioprotective effects of Gdf15 knockdown. Maternal GDM promoted myocardial injury in male offspring by upregulating GDF-15 to aggravate mitochondrial damage.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of maternal gestational diabetes mellitus exacerbating myocardial injury in male offspring by upregulating growth differentiation factor 15 to promote mitochondrial dysfunction.\",\"authors\":\"Mingdong Zhu, Fengling Yin, Yanan Qiu, Yang Liu\",\"doi\":\"10.1007/s11010-025-05395-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gestational diabetes mellitus (GDM) is a prevalent metabolic disturbance in pregnancy. This study analyzed the mechanism of maternal GDM inducing myocardial injury in male offspring through growth differentiation factor-15 (GDF-15). Pregnant rats were randomly assigned to the GDM-mother (streptozotocin [STZ] induction) and the Control-mother (normal saline injection) groups. Here, 32 male offspring from the Control-mother group and 92 from the GDM-mother group were used for experiments. The myocardial ischemia model was established by left anterior descending (LAD) coronary artery ligation in 6-week-old male offspring. Male offspring in the GDM-mother group were treated with sh-Gdf15, pyrroloquinoline quinone, or rotenone. Cardiac function, oxidative stress-associated indicators, myocardial infarct size and necrosis, inflammatory infiltration, cardiomyocyte apoptosis, mitochondrial damage, and Gdf15 mRNA and protein expression were examined using echocardiography, kits, TTC/H&E/TUNEL staining, flow cytometry, RT-qPCR, and western blot. GDM maternal rats had elevated blood glucose and a reduced body weight, representing successful modeling. Prenatal STZ exposure did not affect blood glucose but decreased the body weight in male offspring. The baseline cardiac function was not affected by prenatal STZ exposure, whereas LAD ligation-induced ischemia caused severe cardiac dysfunction in GDM male offspring versus controls. GDF-15 was upregulated in GDM rat male offspring, and its knockdown alleviated myocardial injury. Adult male offspring of GDM rats exhibited pronounced mitochondrial damage, and mitochondrial homeostasis restoration improved ischemia-caused cardiac dysfunction. Suppressing mitochondrial function partly abrogated cardioprotective effects of Gdf15 knockdown. Maternal GDM promoted myocardial injury in male offspring by upregulating GDF-15 to aggravate mitochondrial damage.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05395-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05395-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mechanism of maternal gestational diabetes mellitus exacerbating myocardial injury in male offspring by upregulating growth differentiation factor 15 to promote mitochondrial dysfunction.
Gestational diabetes mellitus (GDM) is a prevalent metabolic disturbance in pregnancy. This study analyzed the mechanism of maternal GDM inducing myocardial injury in male offspring through growth differentiation factor-15 (GDF-15). Pregnant rats were randomly assigned to the GDM-mother (streptozotocin [STZ] induction) and the Control-mother (normal saline injection) groups. Here, 32 male offspring from the Control-mother group and 92 from the GDM-mother group were used for experiments. The myocardial ischemia model was established by left anterior descending (LAD) coronary artery ligation in 6-week-old male offspring. Male offspring in the GDM-mother group were treated with sh-Gdf15, pyrroloquinoline quinone, or rotenone. Cardiac function, oxidative stress-associated indicators, myocardial infarct size and necrosis, inflammatory infiltration, cardiomyocyte apoptosis, mitochondrial damage, and Gdf15 mRNA and protein expression were examined using echocardiography, kits, TTC/H&E/TUNEL staining, flow cytometry, RT-qPCR, and western blot. GDM maternal rats had elevated blood glucose and a reduced body weight, representing successful modeling. Prenatal STZ exposure did not affect blood glucose but decreased the body weight in male offspring. The baseline cardiac function was not affected by prenatal STZ exposure, whereas LAD ligation-induced ischemia caused severe cardiac dysfunction in GDM male offspring versus controls. GDF-15 was upregulated in GDM rat male offspring, and its knockdown alleviated myocardial injury. Adult male offspring of GDM rats exhibited pronounced mitochondrial damage, and mitochondrial homeostasis restoration improved ischemia-caused cardiac dysfunction. Suppressing mitochondrial function partly abrogated cardioprotective effects of Gdf15 knockdown. Maternal GDM promoted myocardial injury in male offspring by upregulating GDF-15 to aggravate mitochondrial damage.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.